32 research outputs found

    Identification of Technologies for Provision of Future Aeronautical Communications

    Get PDF
    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes

    Intelligent genetic algorithms for next-generation broadband multi-carrier CDMA wireless networks

    Get PDF
    This dissertation proposes a novel intelligent system architecture for next-generation broadband multi-carrier CDMA wireless networks. In our system, two novel and similar intelligent genetic algorithms, namely Minimum Distance guided GAs (MDGAs) are invented for both peak-to-average power ratio (PAPR) reduction at the transmitter side and multi-user detection (MUD) at the receiver side. Meanwhile, we derive a theoretical BER performance analysis for the proposed MC-CDMA system in A WGN channel. Our analytical results show that the theoretical BER performance of synchronized MC-CDMA system is the same as that of the synchronized DS-CDMA system which is also used as a theoretical guidance of our novel MUD receiver design. In contrast to traditional GAs, our MDGAs start with a balanced ratio of exploration and exploitation which is maintained throughout the process. In our algorithms, a new replacement strategy is designed which increases significantly the convergence rate and reduces dramatically computational complexity as compared to the conventional GAs. The simulation results demonstrate that, if compared to those schemes using exhaustive search and traditional GAs, (1) our MDGA-based P APR reduction scheme achieves 99.52% and 50+% reductions in computational complexity, respectively; (2) our MDGA-based MUD scheme achieves 99.54% and 50+% reductions in computational complexity, respectively. The use of one core MDGA solution for both issues can ease the hardware design and dramatically reduce the implementation cost in practice.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Technology Assessment for the Future Aeronautical Communications System

    Get PDF
    To address emerging saturation in the VHF aeronautical bands allocated internationally for air traffic management communications, the International Civil Aviation Organization (ICAO) has requested development of a common global solution through its Aeronautical Communications Panel (ACP). In response, the Federal Aviation Administration (FAA) and Eurocontrol initiated a joint study, with the support of NASA and U.S. and European contractors, to provide major findings on alternatives and recommendations to the ICAO ACP Working Group C (WG-C). Under an FAA/Eurocontrol cooperative research and development agreement, ACP WG-C Action Plan 17 (AP-17), commonly referred to as the Future Communications Study (FCS), NASA Glenn Research Center is responsible for the investigation of potential communications technologies that support the long-term mobile communication operational concepts of the FCS. This report documents the results of the first phase of the technology assessment and recommendations referred to in the Technology Pre-Screening Task 3.1 of AP-17. The prescreening identifies potential technologies that are under development in the industry and provides an initial assessment against a harmonized set of evaluation criteria that address high level capabilities, projected maturity for the time frame for usage in aviation, and potential applicability to aviation. A wide variety of candidate technologies were evaluated from several communications service categories including: cellular telephony; IEEE-802.xx standards; public safety radio; satellite and over-the-horizon communications; custom narrowband VHF; custom wideband; and military communications

    Enabling Fairness and QoS for LTE/Wi-Fi Coexistence in Unlicensed Spectrum

    Get PDF
    The increase of the number of interconnected devices, the Internet of Things (IoT) and new types of services have led to the development of new techniques to improve data transmission and new commercial opportunities in the telecommunications world. A possible solution that has attracted many telecom companies is the ability to expand their business by exploring new frequency bands, in particular the unlicensed spectrum. Licensed Assisted Access (LAA) is an LTE based technology that leverages the 5GHz unlicensed band along with licensed spectrum to deliver a performance boost for mobile device users. A key aspect of LAA is how to regulate access to the communication channel in order to maintain fairness between LTE and other technologies already present in this spectrum section. Listen Before Talk (LBT) is a technique used in radiocommunications whereby radio transmitters first sense its radio environment before it starts a transmission. However, the aggressive character of LTE is not always correctly managed by LBT. Based on this observation, we have tried to develop a new channel access method that makes LTE less invasive on the unlicensed spectrum, providing high performance services. The results obtained show that our algorithm is able to better balance resource sharing by ensuring that all technologies within the frequency band have good coexistence and high performance

    Antenna aided interference mitigation for cognitive radio

    Get PDF

    Performance study of air interface for broadband wireless packet access

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Investigation of Techniques for Reducing Mobile Communication Systems Harmful Out-Of-Band Emission

    Get PDF
    Electromagnetic compatibility in the newly designated Long-Term Evolution (LTE) mobile network in the 790–862 MHz frequency band from perspective of interference management between neighbouring services are analysed in the dissertation. Main focal point of this dissertation is on the problems that face LTE networks based on Orthogonal Frequency-Division Multiplexing (OFDM) due to the relatively strong side lobes around the active subcarriers in the main communication channel, which introduces interference effects between LTE stations and other services. The introductory chapter presents the investigated problem, objects of research, importance of the dissertation, describes research methodology, scientific novelty and the defended statements. The situation in the 790–862 MHz frequency band is overviewed regarding most sensitive challenges in the first chapter: LTE stations’ influence on Short-Range Devices (SRD), digital terrestrial TV broadcasting (DVB-T) and aeronautical radio navigation systems (ARNS). The noticeable lack of information is observed regarding SRD and LTE electromagnetic compatibility. The Filter Bank Multicarrier Transmission technique (FBMC) is pro-posed as means to minimize adjacent band interference in the 790–862 MHz frequency band. Main FBMC benefits are presented through comparison with reference case of OFDM. The key advantage of FBMC technique is derived from its low out-of-band leakage, which guarantees minimum harmful interference level between stations using adjacent channels. The harmful interference of LTE mobile stations’ influence on Short-Range Devices operating in the 863–870 MHz frequency band is analysed in the second chapter. Two analysis methods are used in this study: first applying theoretical analysis using Minimum Coupling Loss calculations, then statistical Monte-Carlo in order to verify results obtained in theoretical approach. The third chapter is focused on the experimental analysis to reproduce the situation that was investigated in theoretical analysis chapter. Verification of theoretical analysis by practical measurements confirmed that the LTE user equipment (UE) emissions may affect SRD devices and completely or partially disrupt their communications at distances of up to several meters from LTE UE. The obtained results are summarized and general conclusions are drawn

    A study of mobile VoIP performance in wireless broadband networks

    Get PDF
    Voice service is to date still the killer mobile service and the main source for operator revenue for years to come. Additionally, voice service will evolve from circuit switched technologies towards packet based Voice over IP (VoIP). However, using VoIP over wireless networks different from 3GPP cellular technologies makes it also a disruptive technology in the traditional telecommunication sector. The focus of this dissertation is on determining mobile VoIP performance in different wireless broadband systems with current state of the art networks, as well as the potential disruption to cellular operators when mobile VoIP is deployed over different access networks. The research method is based on an empirical model. The model and experiments are well documented and based on industry standards for voice quality evaluation. The evaluation provides results from both experiments in a controlled laboratory setup as well as from live scenarios. The research scope is first, evaluate each network technology independently; second, investigate vertical handover mobility cases; third, determine other aspects directly affecting end user experience (e.g., call setup delay and battery lifetime). The main contribution of this work is a systematic examination of mobile VoIP performance and end user experience. The research results point out the main challenges for achieving call toll quality, and how derive the required changes and technological performance roadmap for improved VoIP service. That is, investigate how the performance and usability of mobile VoIP can eventually be improved to be a suitable substitute for circuit switched voice. In addition, we evaluate the potential disruption to cellular operators that mobile VoIP brings when deployed over other access networks. This research extends the available knowledge from simulations and provides an insight into actual end user experience, as well as the challenges of using embedded clients in handheld devices. In addition, we find several issues that are not visible or accounted for in simulations in regard to network parameters, required retransmissions and decreased battery lifetime. The conclusion is that although the network performance of several wireless networks is good enough for near toll quality voice in static scenarios, there are still a number of problems which make it currently unfeasible to use as a primary voice service. Moreover, under mobility scenarios performance is degraded. Finally, there are other issues apart from network performance such as energy consumption, hardware limitations and lack of supporting business models (e.g., for WiFi mesh) that further limit the possibility of rolling out mobile VoIP services
    corecore