111,099 research outputs found

    Computational Performance Evaluation of Two Integer Linear Programming Models for the Minimum Common String Partition Problem

    Full text link
    In the minimum common string partition (MCSP) problem two related input strings are given. "Related" refers to the property that both strings consist of the same set of letters appearing the same number of times in each of the two strings. The MCSP seeks a minimum cardinality partitioning of one string into non-overlapping substrings that is also a valid partitioning for the second string. This problem has applications in bioinformatics e.g. in analyzing related DNA or protein sequences. For strings with lengths less than about 1000 letters, a previously published integer linear programming (ILP) formulation yields, when solved with a state-of-the-art solver such as CPLEX, satisfactory results. In this work, we propose a new, alternative ILP model that is compared to the former one. While a polyhedral study shows the linear programming relaxations of the two models to be equally strong, a comprehensive experimental comparison using real-world as well as artificially created benchmark instances indicates substantial computational advantages of the new formulation.Comment: arXiv admin note: text overlap with arXiv:1405.5646 This paper version replaces the one submitted on January 10, 2015, due to detected error in the calculation of the variables involved in the ILP model

    Index to Library Trends Volume 38

    Get PDF
    published or submitted for publicatio

    High-speed in vitro intensity diffraction tomography

    Get PDF
    We demonstrate a label-free, scan-free intensity diffraction tomography technique utilizing annular illumination (aIDT) to rapidly characterize large-volume three-dimensional (3-D) refractive index distributions in vitro. By optimally matching the illumination geometry to the microscope pupil, our technique reduces the data requirement by 60 times to achieve high-speed 10-Hz volume rates. Using eight intensity images, we recover volumes of ∼350 μm  ×  100 μm  ×  20  μm, with near diffraction-limited lateral resolution of   ∼  487  nm and axial resolution of   ∼  3.4  μm. The attained large volume rate and high-resolution enable 3-D quantitative phase imaging of complex living biological samples across multiple length scales. We demonstrate aIDT’s capabilities on unicellular diatom microalgae, epithelial buccal cell clusters with native bacteria, and live Caenorhabditis elegans specimens. Within these samples, we recover macroscale cellular structures, subcellular organelles, and dynamic micro-organism tissues with minimal motion artifacts. Quantifying such features has significant utility in oncology, immunology, and cellular pathophysiology, where these morphological features are evaluated for changes in the presence of disease, parasites, and new drug treatments. Finally, we simulate the aIDT system to highlight the accuracy and sensitivity of the proposed technique. aIDT shows promise as a powerful high-speed, label-free computational microscopy approach for applications where natural imaging is required to evaluate environmental effects on a sample in real time.https://arxiv.org/abs/1904.06004Accepted manuscrip

    On computing fixpoints in well-structured regular model checking, with applications to lossy channel systems

    Full text link
    We prove a general finite convergence theorem for "upward-guarded" fixpoint expressions over a well-quasi-ordered set. This has immediate applications in regular model checking of well-structured systems, where a main issue is the eventual convergence of fixpoint computations. In particular, we are able to directly obtain several new decidability results on lossy channel systems.Comment: 16 page

    Office Technology

    Get PDF

    Kochen-Specker Sets and Generalized Orthoarguesian Equations

    Full text link
    Every set (finite or infinite) of quantum vectors (states) satisfies generalized orthoarguesian equations (nnOA). We consider two 3-dim Kochen-Specker (KS) sets of vectors and show how each of them should be represented by means of a Hasse diagram---a lattice, an algebra of subspaces of a Hilbert space--that contains rays and planes determined by the vectors so as to satisfy nnOA. That also shows why they cannot be represented by a special kind of Hasse diagram called a Greechie diagram, as has been erroneously done in the literature. One of the KS sets (Peres') is an example of a lattice in which 6OA pass and 7OA fails, and that closes an open question of whether the 7oa class of lattices properly contains the 6oa class. This result is important because it provides additional evidence that our previously given proof of noa =< (n+1)oa can be extended to proper inclusion noa < (n+1)oa and that nOA form an infinite sequence of successively stronger equations.Comment: 16 pages and 5 figure
    corecore