240,000 research outputs found

    Benchmarks for Parity Games (extended version)

    Full text link
    We propose a benchmark suite for parity games that includes all benchmarks that have been used in the literature, and make it available online. We give an overview of the parity games, including a description of how they have been generated. We also describe structural properties of parity games, and using these properties we show that our benchmarks are representative. With this work we provide a starting point for further experimentation with parity games.Comment: The corresponding tool and benchmarks are available from https://github.com/jkeiren/paritygame-generator. This is an extended version of the paper that has been accepted for FSEN 201

    Stable Marriage with Ties and Bounded Length Preference Lists

    Get PDF
    We consider variants of the classical stable marriage problem in which preference lists may contain ties, and may be of bounded length. Such restrictions arise naturally in practical applications, such as centralised matching schemes that assign graduating medical students to their first hospital posts. In such a setting, weak stability is the most common solution concept, and it is known that weakly stable matchings can have different sizes. This motivates the problem of finding a maximum cardinality weakly stable matching, which is known to be NP-hard in general. We show that this problem is solvable in polynomial time if each man's list is of length at most 2 (even for women's lists that are of unbounded length). However if each man's list is of length at most 3, we show that the problem becomes NP-hard and not approximable within some d > 1, even if each woman's list is of length at most 4

    Stable marriage with ties and bounded length preference lists

    Get PDF
    We consider variants of the classical stable marriage problem in which preference lists may contain ties, and may be of bounded length. Such restrictions arise naturally in practical applications, such as centralised matching schemes that assign graduating medical students to their first hospital posts. In such a setting, weak stability is the most common solution concept, and it is known that weakly stable matchings can have different sizes. This motivates the problem of finding a maximum cardinality weakly stable matching, which is known to be NP-hard in general. We show that this problem is solvable in polynomial time if each man's list is of length at most 2 (even for women's lists that are of unbounded length). However if each man's list is of length at most 3, we show that the problem becomes NP-hard (even if each women's list is of length at most 3) and not approximable within some δ>1 (even if each woman's list is of length at most 4)

    Approximation algorithms for hard variants of the stable marriage and hospitals/residents problems

    Get PDF
    When ties and incomplete preference lists are permitted in the Stable Marriage and Hospitals/Residents problems, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is known to be NP-hard, even under very severe restrictions on the number, size and position of ties. In this paper, we describe polynomial-time 5/3-approximation algorithms for variants of these problems in which ties are on one side only and at the end of the preference lists. The particular variant is motivated by important applications in large scale centralised matching schemes

    Complexity of Restricted and Unrestricted Models of Molecular Computation

    Get PDF
    In [9] and [2] a formal model for molecular computing was proposed, which makes focused use of affinity purification. The use of PCR was suggested to expand the range of feasible computations, resulting in a second model. In this note, we give a precise characterization of these two models in terms of recognized computational complexity classes, namely branching programs (BP) and nondeterministic branching programs (NBP) respectively. This allows us to give upper and lower bounds on the complexity of desired computations. Examples are given of computable and uncomputable problems, given limited time

    Local Sentences and Mahlo Cardinals

    Get PDF
    Local sentences were introduced by J.-P. Ressayre who proved certain remarkable stretching theorems establishing the equivalence between the existence of finite models for these sentences and the existence of some infinite well ordered models. Two of these stretching theorems were only proved under certain large cardinal axioms but the question of their exact (consistency) strength was left open in [O. Finkel and J.-P. Ressayre, Stretchings, Journal of Symbolic Logic, Volume 61 (2), 1996, p. 563-585 ]. Here, we solve this problem, using a combinatorial result of J. H. Schmerl. In fact, we show that the stretching principles are equivalent to the existence of n-Mahlo cardinals for appropriate integers n. This is done by proving first that for each integer n, there is a local sentence phi_n which has well ordered models of order type alpha, for every infinite ordinal alpha > omega which is not an n-Mahlo cardinal
    corecore