1,673 research outputs found

    Spectral Photon-Counting Computed Tomography: Technical Principles and Applications in the Assessment of Cardiovascular Diseases

    Get PDF
    Spectral Photon-Counting Computed Tomography (SPCCT) represents a groundbreaking advancement in X-ray imaging technology. The core innovation of SPCCT lies in its photon-counting detectors, which can count the exact number of incoming x-ray photons and individually measure their energy. The first part of this review summarizes the key elements of SPCCT technology, such as energy binning, energy weighting, and material decomposition. Its energy-discriminating ability represents the key to the increase in the contrast between different tissues, the elimination of the electronic noise, and the correction of beam-hardening artifacts. Material decomposition provides valuable insights into specific elements’ composition, concentration, and distribution. The capability of SPCCT to operate in three or more energy regimes allows for the differentiation of several contrast agents, facilitating quantitative assessments of elements with specific energy thresholds within the diagnostic energy range. The second part of this review provides a brief overview of the applications of SPCCT in the assessment of various cardiovascular disease processes. SPCCT can support the study of myocardial blood perfusion and enable enhanced tissue characterization and the identification of contrast agents, in a manner that was previously unattainable

    Chances and challenges of photon-counting CT in musculoskeletal imaging

    Get PDF
    In musculoskeletal imaging, CT is used in a wide range of indications, either alone or in a synergistic approach with MRI. While MRI is the preferred modality for the assessment of soft tissues and bone marrow, CT excels in the imaging of high-contrast structures, such as mineralized tissue. Additionally, the introduction of dual-energy CT in clinical practice two decades ago opened the door for spectral imaging applications. Recently, the advent of photon-counting detectors (PCDs) has further advanced the potential of CT, at least in theory. Compared to conventional energy-integrating detectors (EIDs), PCDs provide superior spatial resolution, reduced noise, and intrinsic spectral imaging capabilities. This review briefly describes the technical advantages of PCDs. For each technical feature, the corresponding applications in musculoskeletal imaging will be discussed, including high-spatial resolution imaging for the assessment of bone and crystal deposits, low-dose applications such as whole-body CT, as well as spectral imaging applications including the characterization of crystal deposits and imaging of metal hardware. Finally, we will highlight the potential of PCD-CT in emerging applications, underscoring the need for further preclinical and clinical validation to unleash its full clinical potential.</p

    Chances and challenges of photon-counting CT in musculoskeletal imaging

    Get PDF
    In musculoskeletal imaging, CT is used in a wide range of indications, either alone or in a synergistic approach with MRI. While MRI is the preferred modality for the assessment of soft tissues and bone marrow, CT excels in the imaging of high-contrast structures, such as mineralized tissue. Additionally, the introduction of dual-energy CT in clinical practice two decades ago opened the door for spectral imaging applications. Recently, the advent of photon-counting detectors (PCDs) has further advanced the potential of CT, at least in theory. Compared to conventional energy-integrating detectors (EIDs), PCDs provide superior spatial resolution, reduced noise, and intrinsic spectral imaging capabilities. This review briefly describes the technical advantages of PCDs. For each technical feature, the corresponding applications in musculoskeletal imaging will be discussed, including high-spatial resolution imaging for the assessment of bone and crystal deposits, low-dose applications such as whole-body CT, as well as spectral imaging applications including the characterization of crystal deposits and imaging of metal hardware. Finally, we will highlight the potential of PCD-CT in emerging applications, underscoring the need for further preclinical and clinical validation to unleash its full clinical potential.</p

    Comprehensive evaluations of a prototype full field-of-view photon counting CT system through phantom studies

    Full text link
    Photon counting CT (PCCT) has been a research focus in the last two decades. Recent studies and advancements have demonstrated that systems using semiconductor-based photon counting detectors (PCDs) have the potential to provide better contrast, noise and spatial resolution performance compared to conventional scintillator-based systems. With multi-energy threshold detection, PCD can simultaneously provide the photon energy measurement and enable material decomposition for spectral imaging. In this work, we report a performance evaluation of our first CdZnTe-based prototype full-size photon counting CT system through various phantom imaging studies. This prototype system supports a 500 mm scan field-of-view (FOV) and 10 mm cone coverage at isocenter. Phantom scans were acquired using 120 kVp from 50 to 400 mAs to assess the imaging performance on: CT number accuracy, uniformity, noise, spatial resolution, material differentiation and quantification. Both qualitative and quantitative evaluations show that PCCT has superior image quality with lower noise and improved spatial resolution compared to conventional energy integrating detector (EID)-CT. Using projection domain material decomposition approach with multiple energy bin measurements, PCCT virtual monoenergetic images (VMIs) have lower noise, and superior performance in quantifying iodine and calcium concentrations. These improvements lead to increased contrast-to-noise ratio (CNR) for both high and low contrast study objects and can significantly reduce the iodine contrast agent to achieve the same CNR as EID-CT. PCCT can also generate super-high resolution (SHR) images using much smaller detector pixel size than EID-CT and dramatically push the spatial resolution limit. These initial results demonstrate that PCCT based on CdZnTe detectors has huge potential in clinical settings

    First Experimental Evaluation of a High-Resolution Deep Silicon Photon-Counting Sensor

    Full text link
    Purpose: Current photon-counting computed tomography detectors are limited to a pixel size of around 0.3 mm-0.5 mm due to excessive charge sharing degrading the dose efficiency and energy resolution as the pixels become smaller. In this work, we present measurements of a prototype photon-counting detector that leverages the charge sharing to reach a theoretical sub-pixel resolution in the order of 1μ1 {\mu}m. The goal of the study is to validate our Monte-Carlo simulation using measurements, enabling further development. Approach: We measure the channel response at the MAX IV Lab, in the DanMAX beamline, with a 35 keV photon beam, and compare the measurements with a 2D Monte Carlo simulation combined with a charge transport model. Only a few channels on the prototype are connected to keep the number of wire bonds low. Results: The measurements agree generally well with the simulations with the beam close to the electrodes but diverge as the beam is moved further away. The induced charge cloud signals also seem to increase linearly as the beam is moved away from the electrodes. Conclusions: The agreement between measurements and simulations indicates that the Monte-Carlo simulation can accurately model the channel response of the detector with the photon interactions close to the electrodes, which indicates that the unconnected electrodes introduce unwanted effects that need to be further explored. With the same Monte-Carlo simulation previously indicating a resolution of around 1μ1 {\mu}m with similar geometry, the results are promising that an ultra-high resolution detector is not far in the future.Comment: 11 pages, 5 figure

    Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions

    Get PDF
    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5-3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 mum size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 mum and lower kV settings. Characteristic x-rays produced increasing distortion in the spectral response with decreasing detector element size. If not corrected for, this caused a large bias in estimating tissue density parameters for material decomposition. It was also observed that degradation of the spectral response due to characteristic x-rays caused worsening precision in the estimation of tissue density parameters. It was observed that characteristic x-rays do cause some degradation in the spatial and spectral resolution of thin CZT detectors operating under breast CT conditions. These degradations should be manageable with careful selection of the detector element size. Even with the observed spectral distortion from characteristic x-rays, it is still possible to correctly estimate tissue parameters for material decomposition using spectral CT if accurate modeling is used

    Dual-Source Photon-Counting Computed Tomography-Part III: Clinical Overview of Vascular Applications beyond Cardiac and Neuro Imaging

    Get PDF
    Photon-counting computed tomography (PCCT) is an emerging technology that is expected to radically change clinical CT imaging. PCCT offers several advantages over conventional CT, which can be combined to improve and expand the diagnostic possibilities of CT angiography. After a brief description of the PCCT technology and its main advantages we will discuss the new opportunities brought about by PCCT in the field of vascular imaging, while addressing promising future clinical scenarios
    corecore