3,283 research outputs found

    Reflexive insensitive modal logics

    Get PDF
    We analyze a class of modal logics rendered insensitive to reflexivity by way of a modification to the semantic definition of the modal operator. We explore the extent to which these logics can be characterized, and prove a general completeness theorem on the basis of a translation between normal modal logics and their reflexive-insensitive counterparts. Lastly, we provide a sufficient semantic condition describing when a similarly general soundness result is also available

    Inducing syntactic cut-elimination for indexed nested sequents

    Full text link
    The key to the proof-theoretic study of a logic is a proof calculus with a subformula property. Many different proof formalisms have been introduced (e.g. sequent, nested sequent, labelled sequent formalisms) in order to provide such calculi for the many logics of interest. The nested sequent formalism was recently generalised to indexed nested sequents in order to yield proof calculi with the subformula property for extensions of the modal logic K by (Lemmon-Scott) Geach axioms. The proofs of completeness and cut-elimination therein were semantic and intricate. Here we show that derivations in the labelled sequent formalism whose sequents are `almost treelike' correspond exactly to indexed nested sequents. This correspondence is exploited to induce syntactic proofs for indexed nested sequent calculi making use of the elegant proofs that exist for the labelled sequent calculi. A larger goal of this work is to demonstrate how specialising existing proof-theoretic transformations alleviate the need for independent proofs in each formalism. Such coercion can also be used to induce new cutfree calculi. We employ this to present the first indexed nested sequent calculi for intermediate logics.Comment: This is an extended version of the conference paper [20

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents

    Get PDF
    We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, without resorting to embeddings, semantic arguments, or interpreted connectives external to the underlying logical language. A novel feature of our proof includes an orthogonality condition for defining duality between interpolants

    Tool support for reasoning in display calculi

    Get PDF
    We present a tool for reasoning in and about propositional sequent calculi. One aim is to support reasoning in calculi that contain a hundred rules or more, so that even relatively small pen and paper derivations become tedious and error prone. As an example, we implement the display calculus D.EAK of dynamic epistemic logic. Second, we provide embeddings of the calculus in the theorem prover Isabelle for formalising proofs about D.EAK. As a case study we show that the solution of the muddy children puzzle is derivable for any number of muddy children. Third, there is a set of meta-tools, that allows us to adapt the tool for a wide variety of user defined calculi

    Almost structural completeness; an algebraic approach

    Full text link
    A deductive system is structurally complete if its admissible inference rules are derivable. For several important systems, like modal logic S5, failure of structural completeness is caused only by the underivability of passive rules, i.e. rules that can not be applied to theorems of the system. Neglecting passive rules leads to the notion of almost structural completeness, that means, derivablity of admissible non-passive rules. Almost structural completeness for quasivarieties and varieties of general algebras is investigated here by purely algebraic means. The results apply to all algebraizable deductive systems. Firstly, various characterizations of almost structurally complete quasivarieties are presented. Two of them are general: expressed with finitely presented algebras, and with subdirectly irreducible algebras. One is restricted to quasivarieties with finite model property and equationally definable principal relative congruences, where the condition is verifiable on finite subdirectly irreducible algebras. Secondly, examples of almost structurally complete varieties are provided Particular emphasis is put on varieties of closure algebras, that are known to constitute adequate semantics for normal extensions of S4 modal logic. A certain infinite family of such almost structurally complete, but not structurally complete, varieties is constructed. Every variety from this family has a finitely presented unifiable algebra which does not embed into any free algebra for this variety. Hence unification in it is not unitary. This shows that almost structural completeness is strictly weaker than projective unification for varieties of closure algebras
    • …
    corecore