107 research outputs found

    Analysis of M[X1],M[X2]/G1,G2/1 retrial queueing system with priority services, working breakdown, collision, Bernoulli vacation, immediate feedback, starting failure and repair

    Get PDF
    This paper considers an M[X1] , M[X2] /G1,G2/1 general retrial queueing system with priority services. Two types of customers from different classes arrive at the system in different independent compound Poisson processes. The server follows the non-pre-emptive priority rule subject to working breakdown, Bernoulli vacation, starting failure, immediate feedback, collision and repair. After completing each service, the server may go for a vacation or remain idle in the system. The priority customers who find the server busy are queued in the system. If a low-priority customer finds the server busy, he is routed to orbit that attempts to get the service. The system may become defective at any point of time while in operation. However, when the system becomes defective, instead of stopping service completely, the service is continued to the interrupted customer only at a slower rate. Using the supplementary variable technique, the joint distribution of the server state and the number of customers in the queue are derived. Finally, some performance measures are obtained

    Analysis of repairable M[X]/(G1,G2)/1 - feedback retrial G-queue with balking and starting failures under at most J vacations

    Get PDF
    In this paper, we discuss the steady state analysis of a batch arrival feedback retrial queue with two types of services and negative customers. Any arriving batch of positive customers finds the server is free, one of the customers from the batch enters into the service area and the rest of them get into the orbit. The negative customer, is arriving during the service time of a positive customer, will remove the positive customer in-service and the interrupted positive customer either enters the orbit or leaves the system. If the orbit is empty at the service completion of each type of service, the server takes at most J vacations until at least one customer is received in the orbit when the server returns from a vacation. While the busy server may breakdown at any instant and the service channel may fail for a short interval of time. The steady state probability generating function for the system size is obtained by using the supplementary variable method. Numerical illustrations are discussed to see the effect of the system parameters

    Approximate Analysis of an Unreliable M/M/2 Retrial Queue

    Get PDF
    This thesis considers the performance evaluation of an M/M/2 retrial queue for which both servers are subject to active and idle breakdowns. Customers may abandon service requests if they are blocked from service upon arrival, or if their service is interrupted by a server failure. Customers choosing to remain in the system enter a retrial orbit for a random amount of time before attempting to re-access an available server. We assume that each server has its own dedicated repair person, and repairs begin immediately following a failure. Interfailure times, repair times and times between retrials are exponentially distributed, and all processes are assumed to be mutually independent. Modeling the number of customers in the orbit and status of the servers as a continuous-time Markov chain, we employ a phase-merging algorithm to approximately analyze the limiting behavior. Subsequently, we derive approximate expressions for several congestion and delay measures. Using a benchmark simulation model, we assess the accuracy of the approximations and show that, when the algorithm assumptions are met, the approximation procedure yields favorable results. However, as the rate of abandonment for blocked arrivals decreases, the performance declines while the results are insensitive to the rate of abandonment of customers preempted by a server failure

    Analysis of repairable M[X]/(G1,G2)/1 - feedback retrial G-queue with balking and starting failures under at most J vacations

    Get PDF
    In this paper, we discuss the steady state analysis of a batch arrival feedback retrial queue with two types of service and negative customers. Any arriving batch of positive customers finds the server is free, one of the customers from the batch enters into the service area and the rest of them join into the orbit. The negative customer, arriving during the service time of a positive customer, will remove the positive customer in-service and the interrupted positive customer either enters into the orbit or leaves the system. If the orbit is empty at the service completion of each type of service, the server takes at most J vacations until at least one customer is received in the orbit when the server returns from a vacation. The busy server may breakdown at any instant and the service channel will fail for a short interval of time. The steady state probability generating function for the system size is obtained by using the supplementary variable method. Numerical illustrations are discussed to see the effect of system parameters

    Analysis of the finite-source multiclass priority queue with an unreliable server and setup time

    Get PDF
    In this article, we study a queueing system serving multiple classes of customers. Each class has a finite-calling population. The customers are served according to the preemptive-resume priority policy. We assume general distributions for the service times. For each priority class, we derive the steady-state system size distributions at departure/arrival and arbitrary time epochs. We introduce the residual augmented process completion times conditioned on the number of customers in the system to obtain the system time distribution. We then extend the model by assuming that the server is subject to operation-independent failures upon which a repair process with random duration starts immediately. We also demonstrate how setup times, which may be required before resuming interrupted service or picking up a new customer, can be incorporated in the model

    Unreliable Retrial Queues in a Random Environment

    Get PDF
    This dissertation investigates stability conditions and approximate steady-state performance measures for unreliable, single-server retrial queues operating in a randomly evolving environment. In such systems, arriving customers that find the server busy or failed join a retrial queue from which they attempt to regain access to the server at random intervals. Such models are useful for the performance evaluation of communications and computer networks which are characterized by time-varying arrival, service and failure rates. To model this time-varying behavior, we study systems whose parameters are modulated by a finite Markov process. Two distinct cases are analyzed. The first considers systems with Markov-modulated arrival, service, retrial, failure and repair rates assuming all interevent and service times are exponentially distributed. The joint process of the orbit size, environment state, and server status is shown to be a tri-layered, level-dependent quasi-birth-and-death (LDQBD) process, and we provide a necessary and sufficient condition for the positive recurrence of LDQBDs using classical techniques. Moreover, we apply efficient numerical algorithms, designed to exploit the matrix-geometric structure of the model, to compute the approximate steady-state orbit size distribution and mean congestion and delay measures. The second case assumes that customers bring generally distributed service requirements while all other processes are identical to the first case. We show that the joint process of orbit size, environment state and server status is a level-dependent, M/G/1-type stochastic process. By employing regenerative theory, and exploiting the M/G/1-type structure, we derive a necessary and sufficient condition for stability of the system. Finally, for the exponential model, we illustrate how the main results may be used to simultaneously select mean time customers spend in orbit, subject to bound and stability constraints

    A Retrieval Queueing Model With Feedback

    Get PDF
    A multi-server retrial queuing model with feedback is considered in this paper.Input flow of calls is modeled using a Markovian Arrival Process (M AP) and the service time is assumed to follow an exponential distribution. An arriving call enters into service should there be a free server. Otherwise, in accordance to Bernoulli trials, the call will enter into an infinite orbit (referred to as a retrial orbit) to retry along with other calls to get into service or will leave the system forever. After obtaining a service each call, independent of the others, will either enter into a finite orbit (referred to as a feedback orbit) for another service or leave the system forever. The decision to enter into the feedback orbit or not is done according to another Bernoulli trial. Calls from these two buffers will compete with the main source of calls based on signals received from two independent Poisson processes.The rates of these processes depend on the phase of the M AP. The steady-state analysis of the model is carried out and illustrative numerical examples including economical aspects are presented

    Performance evaluation of a discrete-time Geo[X]/G/1 retrial queue with general retrial times

    Get PDF
    AbstractWe consider a discrete-time Geo[X]/G/1 retrial queue with general retrial times. The system state distribution as well as the orbit size and the system size distributions are obtained in terms of their generating functions. These generating functions yield exact expressions for different performance measures. The present model is proved to have a stochastic decomposition law. Hence, a measure of the proximity between the distributions of the system size in the present model and the corresponding one without retrials is derived. A set of numerical results is presented with a focus on the effect of batch arrivals and general retrial times on the system performance. It appears that it is the mean batch size (and not the batch size distribution) that has the main effect on the system performance. Moreover, increasing the mean batch size is shown to have a noticeable effect on the size of the stability region. Finally, geometric retrial times are shown to have an overall better performance compared with two other distributions

    System State Distributions In One Finite Source Unreliable Retrial Queue

    Get PDF
    The object of this paper is to study joint and marginal distributions of the system states at any arbitrary time moment for a single server, finite source retrial queue, in which the server can sustain breakdowns during service times. The server life times as well as the intervals between repetitions are exponentially distributed, while the repair and the service times are generally distributed. Unlike the unreliable model studied by J. Wang et al. [23], in which the interrupted customer waits for the server back from repair, to accomplish the remaining service, in our model this customer goes to the orbit, losing the service time, elapsed before the breakdown occurs
    corecore