20 research outputs found

    A critical look at power law modelling of the Internet

    Get PDF
    This paper takes a critical look at the usefulness of power law models of the Internet. The twin focuses of the paper are Internet traffic and topology generation. The aim of the paper is twofold. Firstly it summarises the state of the art in power law modelling particularly giving attention to existing open research questions. Secondly it provides insight into the failings of such models and where progress needs to be made for power law research to feed through to actual improvements in network performance.Comment: To appear Computer Communication

    Why the Internet Is So Small

    Get PDF
    During the last three decades the Internet has experienced fascinating evolution, both exponential growth in traffic and rapid expansion in topology. The size of the Internet becomes enormous, yet the network is very ‘small’ in the sense that it is extremely efficient to route data packets across the global Internet. This paper provides a brief review on three fundamental properties of the Internet topology at the autonomous systems (AS) level. Firstly the Internet has a power-law degree distribution, which means the majority of nodes on the Internet AS graph have small numbers of links, whereas a few nodes have very large numbers of links. Secondly the Internet exhibits a property called disassortative mixing, which means poorly-connected nodes tend to link with well-connected nodes, and vice versa. Thirdly the best-connected nodes, or the rich nodes, are tightly interconnected with each other forming a rich-club. We explain that it is these structural properties that make the global Internet so ‘small’

    Network Transparency: Seeing the Neutral Network

    Get PDF
    Article published in the Northwestern Journal of Technology and Intellectual Property

    Network Transparency: Seeing the Neutral Network

    Get PDF

    Lock-Ins auf Netzeffektmärkten – Ergebnisse einer Simulationsstudie

    Get PDF
    Auf Märkten für Netzeffektgüter – wie beispielsweise Software – kommt es häufig zu so genannten Lock-Ins. Die Untersuchung von Zufallsnetzwerken sowie zwei sozialen Online-Netzwerken mithilfe eines agentenbasierten Simulationsprototypen zeigt, dass sowohl die Netzwerktopologie als auch die Netzeffektstärke einen wesentlichen Einfluss auf die Lock-In-Häufigkeit ausüben. Typischerweise steigt die Lock-In-Häufigkeit mit zunehmender Netzeffektstärke und Vermaschung der Netzwerke. In Topologien sozialer Netzwerke trifft dies jedoch nur teilweise zu

    CYBER RELIABILITY OF CRITICAL PHYSICAL INFRASTRUCTURES

    Get PDF
    The paper considers the problem of constructing a full group of failure scenarios for physical infrastructures when subjected to cyber attacks (CAs). Physical infrastructures actually are systems of systems, or network of networks [1]. The main idea of the research rests on the assumption, that in order to damage any physical infrastructure by a cyber attack, it has to be able to produce a powerful enough physical impact on the most vulnerable part(s) of the infrastructure. Only civil engineering and industrial structures and installations connected to Internet and World Wide Web are considered. Hence, all infrastructures discussed below have to be elements of the Enterprise IoT or IoT, namely: electrical grids, oil, gas and product pipeline systems, water supply and disposal (waste) systems, rail networks, air traffic control and telecommunications (finance, commerce, business) networks, etc

    The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena

    Full text link
    The Internet is the most complex system ever created in human history. Therefore, its dynamics and traffic unsurprisingly take on a rich variety of complex dynamics, self-organization, and other phenomena that have been researched for years. This paper is a review of the complex dynamics of Internet traffic. Departing from normal treatises, we will take a view from both the network engineering and physics perspectives showing the strengths and weaknesses as well as insights of both. In addition, many less covered phenomena such as traffic oscillations, large-scale effects of worm traffic, and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex System

    k-Dense communities in the Internet AS-level topology graph

    Get PDF
    In this paper we investigate the structure of the Internet by exploiting an efficient algorithm for extracting k-dense communities from the Internet AS-level topology graph. The analyses showed that the most well-connected communities consist of a small number of ASs characterized by a high level of clusterization, although they tend to direct a lot of their connections to ASs outside the community. In addition these communities are mainly composed of ASs that participate at the Internet Exchange Points (IXPs) and have a worldwide geographical scope. Regarding k-max-dense ASs we found that they play a primary role in the Internet connectivity since they are involved in a huge number of Internet connections (42% of Internet connections). We also investigated the properties of three classes of k-max-dense ASs: Content Delivery Networks, Internet Backbone Providers and Tier-1s. Specifically, we showed that CDNs and IBPs heavily exploit IXPs by participating in many of them and connecting to many IXP participant ASs. On the other hand, we found that a high percentage of connections originated by Tier-1 ASs are likely to involve national ASs which do not participate at IXPs
    corecore