6,119 research outputs found

    Timescales of spike-train correlation for neural oscillators with common drive

    Full text link
    We examine the effect of the phase-resetting curve (PRC) on the transfer of correlated input signals into correlated output spikes in a class of neural models receiving noisy, super-threshold stimulation. We use linear response theory to approximate the spike correlation coefficient in terms of moments of the associated exit time problem, and contrast the results for Type I vs. Type II models and across the different timescales over which spike correlations can be assessed. We find that, on long timescales, Type I oscillators transfer correlations much more efficiently than Type II oscillators. On short timescales this trend reverses, with the relative efficiency switching at a timescale that depends on the mean and standard deviation of input currents. This switch occurs over timescales that could be exploited by downstream circuits

    Phase resetting reveals network dynamics underlying a bacterial cell cycle

    Get PDF
    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS)

    Emergence and combinatorial accumulation of jittering regimes in spiking oscillators with delayed feedback

    Get PDF
    Interaction via pulses is common in many natural systems, especially neuronal. In this article we study one of the simplest possible systems with pulse interaction: a phase oscillator with delayed pulsatile feedback. When the oscillator reaches a specific state, it emits a pulse, which returns after propagating through a delay line. The impact of an incoming pulse is described by the oscillator's phase reset curve (PRC). In such a system we discover an unexpected phenomenon: for a sufficiently steep slope of the PRC, a periodic regular spiking solution bifurcates with several multipliers crossing the unit circle at the same parameter value. The number of such critical multipliers increases linearly with the delay and thus may be arbitrary large. This bifurcation is accompanied by the emergence of numerous "jittering" regimes with non-equal interspike intervals (ISIs). Each of these regimes corresponds to a periodic solution of the system with a period roughly proportional to the delay. The number of different "jittering" solutions emerging at the bifurcation point increases exponentially with the delay. We describe the combinatorial mechanism that underlies the emergence of such a variety of solutions. In particular, we show how a periodic solution exhibiting several distinct ISIs can imply the existence of multiple other solutions obtained by rearranging of these ISIs. We show that the theoretical results for phase oscillators accurately predict the behavior of an experimentally implemented electronic oscillator with pulsatile feedback

    A comparison of methods to determine neuronal phase-response curves

    Get PDF
    The phase-response curve (PRC) is an important tool to determine the excitability type of single neurons which reveals consequences for their synchronizing properties. We review five methods to compute the PRC from both model data and experimental data and compare the numerically obtained results from each method. The main difference between the methods lies in the reliability which is influenced by the fluctuations in the spiking data and the number of spikes available for analysis. We discuss the significance of our results and provide guidelines to choose the best method based on the available data.Comment: PDFLatex, 16 pages, 7 figures
    corecore