12,138 research outputs found

    What Is the Validity Domain of Einstein’s Equations? Distributional Solutions over Singularities and Topological Links in Geometrodynamics

    Get PDF
    The existence of singularities alerts that one of the highest priorities of a centennial perspective on general relativity should be a careful re-thinking of the validity domain of Einstein’s field equations. We address the problem of constructing distinguishable extensions of the smooth spacetime manifold model, which can incorporate singularities, while retaining the form of the field equations. The sheaf-theoretic formulation of this problem is tantamount to extending the algebra sheaf of smooth functions to a distribution-like algebra sheaf in which the former may be embedded, satisfying the pertinent cohomological conditions required for the coordinatization of all of the tensorial physical quantities, such that the form of the field equations is preserved. We present in detail the construction of these distribution-like algebra sheaves in terms of residue classes of sequences of smooth functions modulo the information of singular loci encoded in suitable ideals. Finally, we consider the application of these distribution-like solution sheaves in geometrodynamics by modeling topologically-circular boundaries of singular loci in three-dimensional space in terms of topological links. It turns out that the Borromean link represents higher order wormhole solutions

    Complex Algebras of Arithmetic

    Full text link
    An 'arithmetic circuit' is a labeled, acyclic directed graph specifying a sequence of arithmetic and logical operations to be performed on sets of natural numbers. Arithmetic circuits can also be viewed as the elements of the smallest subalgebra of the complex algebra of the semiring of natural numbers. In the present paper, we investigate the algebraic structure of complex algebras of natural numbers, and make some observations regarding the complexity of various theories of such algebras

    The algebraic structure of geometric flows in two dimensions

    Full text link
    There is a common description of different intrinsic geometric flows in two dimensions using Toda field equations associated to continual Lie algebras that incorporate the deformation variable t into their system. The Ricci flow admits zero curvature formulation in terms of an infinite dimensional algebra with Cartan operator d/dt. Likewise, the Calabi flow arises as Toda field equation associated to a supercontinual algebra with odd Cartan operator d/d \theta - \theta d/dt. Thus, taking the square root of the Cartan operator allows to connect the two distinct classes of geometric deformations of second and fourth order, respectively. The algebra is also used to construct formal solutions of the Calabi flow in terms of free fields by Backlund transformations, as for the Ricci flow. Some applications of the present framework to the general class of Robinson-Trautman metrics that describe spherical gravitational radiation in vacuum in four space-time dimensions are also discussed. Further iteration of the algorithm allows to construct an infinite hierarchy of higher order geometric flows, which are integrable in two dimensions and they admit immediate generalization to Kahler manifolds in all dimensions. These flows provide examples of more general deformations introduced by Calabi that preserve the Kahler class and minimize the quadratic curvature functional for extremal metrics.Comment: 54 page

    Modal Logics that Bound the Circumference of Transitive Frames

    Full text link
    For each natural number nn we study the modal logic determined by the class of transitive Kripke frames in which there are no cycles of length greater than nn and no strictly ascending chains. The case n=0n=0 is the G\"odel-L\"ob provability logic. Each logic is axiomatised by adding a single axiom to K4, and is shown to have the finite model property and be decidable. We then consider a number of extensions of these logics, including restricting to reflexive frames to obtain a corresponding sequence of extensions of S4. When n=1n=1, this gives the famous logic of Grzegorczyk, known as S4Grz, which is the strongest modal companion to intuitionistic propositional logic. A topological semantic analysis shows that the nn-th member of the sequence of extensions of S4 is the logic of hereditarily n+1n+1-irresolvable spaces when the modality â—Š\Diamond is interpreted as the topological closure operation. We also study the definability of this class of spaces under the interpretation of â—Š\Diamond as the derived set (of limit points) operation. The variety of modal algebras validating the nn-th logic is shown to be generated by the powerset algebras of the finite frames with cycle length bounded by nn. Moreover each algebra in the variety is a model of the universal theory of the finite ones, and so is embeddable into an ultraproduct of them

    Algebraic foundations for qualitative calculi and networks

    Full text link
    A qualitative representation ϕ\phi is like an ordinary representation of a relation algebra, but instead of requiring (a;b)ϕ=aϕ∣bϕ(a; b)^\phi = a^\phi | b^\phi, as we do for ordinary representations, we only require that cϕ⊇aϕ∣bϕ  ⟺  c≥a;bc^\phi\supseteq a^\phi | b^\phi \iff c\geq a ; b, for each cc in the algebra. A constraint network is qualitatively satisfiable if its nodes can be mapped to elements of a qualitative representation, preserving the constraints. If a constraint network is satisfiable then it is clearly qualitatively satisfiable, but the converse can fail. However, for a wide range of relation algebras including the point algebra, the Allen Interval Algebra, RCC8 and many others, a network is satisfiable if and only if it is qualitatively satisfiable. Unlike ordinary composition, the weak composition arising from qualitative representations need not be associative, so we can generalise by considering network satisfaction problems over non-associative algebras. We prove that computationally, qualitative representations have many advantages over ordinary representations: whereas many finite relation algebras have only infinite representations, every finite qualitatively representable algebra has a finite qualitative representation; the representability problem for (the atom structures of) finite non-associative algebras is NP-complete; the network satisfaction problem over a finite qualitatively representable algebra is always in NP; the validity of equations over qualitative representations is co-NP-complete. On the other hand we prove that there is no finite axiomatisation of the class of qualitatively representable algebras.Comment: 22 page

    Generalized Fock Spaces, New Forms of Quantum Statistics and their Algebras

    Get PDF
    We formulate a theory of generalized Fock spaces which underlies the different forms of quantum statistics such as ``infinite'', Bose-Einstein and Fermi-Dirac statistics. Single-indexed systems as well as multi-indexed systems that cannot be mapped into single-indexed systems are studied. Our theory is based on a three-tiered structure consisting of Fock space, statistics and algebra. This general formalism not only unifies the various forms of statistics and algebras, but also allows us to construct many new forms of quantum statistics as well as many algebras of creation and destruction operators. Some of these are : new algebras for infinite statistics, q-statistics and its many avatars, a consistent algebra for fractional statistics, null statistics or statistics of frozen order, ``doubly-infinite'' statistics, many representations of orthostatistics, Hubbard statistics and its variations.Comment: This is a revised version of the earlier preprint: mp_arc 94-43. Published versio
    • …
    corecore