589 research outputs found

    Optical Coherence Tomography Image Analysis of Corneal Tissue

    Get PDF
    Because of the ubiquitous use of contact lenses, there is considerable interest in better understanding the anatomy of the cornea, the part of the eye in contact with an exterior lens. The recent technology developments in high resolution Optical Coherence Tomography (OCT) devices allows for the in-vivo observation of the structure of the human cornea in 3D and at cellular level resolution. Prolonged wear of contact lenses, inflammations, scarring and diseases can change the structure and physiology of the human cornea. OCT is capable of in-vivo, non-contact, 3D imaging of the human cornea. In this research, novel image processing algorithms were developed to process OCT images of the human cornea, in order to determine the corneal optical scattering and transmission. The algorithms were applied to OCT data sets acquired from multiple subjects before, during and after prolonged (3 hours) wear of soft contact lenses and eye patches, in order to investigate the changes in the corneal scattering associated with hypoxia. Results from this study demonstrate the ability of OCT to measure the optical scattering of corneal tissue and to monitor its changes resulting from external stress (hypoxia)

    Optical Coherence Tomography Image Analysis of Corneal Tissue

    Get PDF
    Because of the ubiquitous use of contact lenses, there is considerable interest in better understanding the anatomy of the cornea, the part of the eye in contact with an exterior lens. The recent technology developments in high resolution Optical Coherence Tomography (OCT) devices allows for the in-vivo observation of the structure of the human cornea in 3D and at cellular level resolution. Prolonged wear of contact lenses, inflammations, scarring and diseases can change the structure and physiology of the human cornea. OCT is capable of in-vivo, non-contact, 3D imaging of the human cornea. In this research, novel image processing algorithms were developed to process OCT images of the human cornea, in order to determine the corneal optical scattering and transmission. The algorithms were applied to OCT data sets acquired from multiple subjects before, during and after prolonged (3 hours) wear of soft contact lenses and eye patches, in order to investigate the changes in the corneal scattering associated with hypoxia. Results from this study demonstrate the ability of OCT to measure the optical scattering of corneal tissue and to monitor its changes resulting from external stress (hypoxia)

    Optical Modeling of Schematic Eyes and the Ophthalmic Applications

    Get PDF
    The objectives of this dissertation are to advance and broaden the traditional average eye modeling technique by two extensions: 1) population-based and personalized eye modeling for both normal and diseased conditions, and 2) demonstration of applications of this pioneering eye modeling.The first type of representative eye modeling can be established using traditional eye modeling techniques with statistical biometric information of the targeted population. Ocular biometry parameters can be mathematically assigned according to the distribution functions and correlations between parameters. For example, the axial dimension of the eye relates to age, gender, and body height factors. With the investigation results from the studies of different population groups, population-based eye modeling can be established. The second type of eye model includes the optical components of the detailed corneal structure. Many of these structures, especially the corneal topography and wavefront aberration, are measured directly from the human eye. Therefore, the personalized eye models render the exact clinical measure and optical performance of the eye. In a sense, the whole eye, other than the identity of the individual, is quantified and stored in digital form for unlimited use for future research and industrial applications. The presentation of this dissertation is: Chapter 1 describes the background of the research in this area, the introduction of eye anatomy, and the motivation of this dissertation work. In Chapter 2, a comprehensive review of the contemporary techniques of measuring ocular parameters is presented and is followed by the review of literature and then the statistical analysis of the ocular biometry parameters. The goal of this chapter is to build a statistical base for population-based schematic eye modeling research. The analysis includes the investigation of the correlations between ocular parameters and ocular refraction, subject age, gender, ethnicity, and accommodation conditions. In Chapter 3, the tools and methods that are used in our optical eye modeling are introduced. The operation of the optical program ZEMAX is discussed. The detail of the optical eye modeling procedure and method of optical optimization, which is utilized to reproduce desired clinical measurement results, are described. The validation functions, which will be used to evaluate the optimization results, are also addressed. Chapter 4 includes the discussion of the population-based eye modeling and the personalized eye modeling. With the statistical information and the clinical measurements presented in Chapter 2 and the computation method described in Chapter 3, the two types of eye modeling technologies are demonstrated. The procedure, difficulty, and validation of eye modeling are included. The considerations of optical opacities, irregular optical surface, multiple reflection, scattering, and tear film breakup effects are discussed and the possible solutions in ZEMAX are suggested. Chapter 5 presents eye modeling applications of the simulations of ophthalmic instrument measurements. The demonstrated simulation results are retinoscopy and photorefraction. The simulation includes both normal eye model and diseased eye model. The close conformity between the simulation results with the actual clinical measurements further validates the eye modeling technique. The ophthalmic simulation application provides the potential for medical training and instrument development. The summary of the dissertation is given in Chapter 6

    Refractive correction method for digital charge-coupled device-recorded Scheimpflug photographs by means of ray tracing

    Get PDF
    Our purpose is to correct digital CCD-recorded Scheimpflug photographs, imaging both the anterior and posterior corneal surface, the anterior chamber, and the anterior eye lens surface for optical distortions. In a ray-tracing algorithm the imaging of the posterior corneal surface in a given Scheimpflug photograph is corrected by applying Snell’s law on parallel incident rays entering through the anterior corneal surface. Once the posterior corneal surface is corrected, the procedure is repeated, again with parallel incident rays entering through both the anterior and now corrected posterior corneal surface, to correct the imaging of the anterior eye lens surface. The refractive indices necessary for Snell’s law are taken from Gullstrand’s exact schematic eye model. Due to the optical/refractive correction, the digital Scheimpflug photograph decreases in size perpendicular to the direction of the optical axis. As a consequence the curvature radii of both the posterior corneal surface and the anterior lens surface are reduced significantly, as compared to the original digital Scheimpflug photograph. Furthermore, the corneal thickness and the anterior chamber depth are increased. The presented refractive correction method enables us to extract from Scheimpflug photographs the following quantities rather realistically: structure coordinates and curvature radii of both the posterior corneal surface and the anterior lens surface, corneal thickness, and anterior chamber depth. This method can readily be applied to other imaged quantities, such as the posterior eye lens surface, the lens thickness, and the pupillary opening

    A hybrid approach to determining cornea mechanical properties using a combination of inverse finite element analysis and experimental techniques

    Get PDF
    It is of great clinical importance to predict the behaviour of the cornea in various diseases and post-surgical recovery. Therefore, a numerical model that is able to simulate the corneal behaviour, considering corneal material properties obtained from individuals is highly desirable. In this work a combined numerical-experimental technique has been developed that can characterize the mechanical properties of a cornea properties from two aspects: time-dependency and spatial variation. Initially, an analysis of the material properties of porcine corneas was performed to investigate the time-dependent behaviour of the cornea. A simple stress relaxation test was used to determine the viscoelastic properties of a cornea and a rheological model was built based on the Generalized Maxwell (GM) approach. A validation experiment using nano-indentation showed that an isotropic GM model was insufficient for describing the corneal time-dependent behaviour when exposed to a complex stress state. A technique was proposed that takes into account the microstructural composition of the cornea and is based on a combination of nano-indentation experiment, isotropic and transversely isotropic numerical models, and an inverse finite element method. The good agreement using this method suggests that this is a promising technique for measuring the time-dependent properties of the cornea. The spatial variation of the properties was then investigated. This time, the long term structural response of the cornea was targeted. A full field displacement response of a loaded cornea was evaluated from Optical Coherence Tomography (OCT) volume reconstructions of the cornea using Digital Volume Correlation (DVC). The inverse finite element method was employed with two models sequentially; first, a radially partitioned model and then a circumferentially partitioned model, in order to recover the elastic parameters in radial and circumferential directions. The good agreement using this method suggests that this is a promising and reliable technique for identifying the distribution of the corneal properties. In this research, we have shown that it is possible to determine the local time-dependent properties of the cornea and the in-depth (2D) distribution of the properties using the hybrid technique. This technique has the potential to be implemented in vivo. However, further work should focus on the feasibility of this technique in practice
    • …
    corecore