4 research outputs found

    Identification of time-varying systems using multiresolution wavelet models

    Get PDF
    Identification of linear and nonlinear time-varying systems is investigated and a new wavelet model identification algorithm is introduced. By expanding each time-varying coefficient using a multiresolution wavelet expansion, the time-varying problem is reduced to a time invariant problem and the identification reduces to regressor selection and parameter estimation. Several examples are included to illustrate the application of the new algorithm

    Time-frequency analysis using time-order representation and Wigner distribution

    Full text link

    Automated Classification of Medical Percussion Signals for the Diagnosis of Pulmonary Injuries

    Get PDF
    Used for centuries in the clinical practice, audible percussion is a method of eliciting sounds by areas of the human body either by finger tips or by a percussion hammer. Despite its advantages, pulmonary diagnostics by percussion is still highly subjective, depends on the physician\u27s skills, and requires quiet surroundings. Automation of this well-established technique could help amplify its existing merits while removing the above drawbacks. In this study, an attempt is made to automatically decompose clinical percussion signals into a sum of Exponentially Damped Sinusoids (EDS) using Matrix Pencil Method, which in this case form a more natural basis than Fourier harmonics and thus allow for a more robust representation of the signal in the parametric space. It is found that some EDS represent transient oscillation modes of the thorax/abdomen excited by the percussion event, while others are associated with the noise. It is demonstrated that relatively few EDS are usually enough to accurately reconstruct the original signal. It is shown that combining the frequency and damping parameters of these most significant EDS allows for efficient classification of percussion signals into the two main types historically known as resonant and tympanic . This classification ability can provide a basis for the automated objective diagnostics of various pulmonary pathologies including pneumothorax

    Rolling contact fatigue failures in silicon nitride and their detection

    No full text
    The project investigates the feasibility of using sensor-based detection and processing systems to provide a reliable means of monitoring rolling contact fatigue (RCF) wear failures of silicon nitride in hybrid bearings. To fulfil this investigation, a decision was made early in the project to perform a series of hybrid rolling wear tests using a twin disc machine modified for use on hybrid bearing elements.The initial part of the thesis reviews the current understanding of the general wear mechanisms and RCF with a specific focus to determine the appropriate methods for their detection in hybrid bearings. The study focusses on vibration, electrostatic and acoustic emission (AE) techniques and reviews their associated sensing technologies currently deployed with a view of adapting them for use in hybrids. To provide a basis for the adaptation, an understanding of the current sensor data enhancement and feature extraction methods is presented based on a literature review.The second part describes the test equipment, its modifications and instrumentation required to capture and process the vibration, electrostatic and AE signals generated in hybrid elements. These were identified in an initial feasibility test performed on a standard twin disc machine. After a detailed description of the resulting equipment, the thesis describes the calibration tests aimed to provide base data for the development of the signal processing methods.The development of the signal processing techniques is described in detail for each of the sensor types. Time synchronous averaging (TSA) technique is used to identify the location of the signal sources along the surfaces of the specimens and the signals are enhanced by additional filtering techniques.The next part of the thesis describes the main hybrid rolling wear tests; it details the selection of the run parameters and the samples seeded with surface cracks to cover a variety of situations, the method of execution of each test run, and the techniques to analyse the results.The research establishes that two RCF fault types are produced in the silicon nitride rolling element reflecting essentially different mechanisms in their distinct and separate development; i) cracks, progressing into depth and denoted in this study as C-/Ring crack Complex (CRC) and ii) Flaking, progressing primarily on the surface by spalls. Additionally and not reported in the literature, an advanced stage of the CRC fault type composed of multiple and extensive c-cracks is interpreted as the result of induced sliding in these runs. In general, having reached an advanced stage, both CRC and Flaking faults produce significant wear in the steel counterface through abrasion, plastic deformation or 3-body abrasion in at least three possible ways, all of which are described in details
    corecore