13 research outputs found

    The unlabelled speed of a hereditary graph property

    Get PDF
    AbstractA property of graphs is a collection P of graphs closed under isomorphism; we call P hereditary if it is closed under taking induced subgraphs. Given a property P, we write Pn for the set of graphs in P with vertex set [n]={1,…,n}, and Pn for the isomorphism classes of graphs of order n that are in P. The cardinality |Pn| is the labelled speed of P and |Pn| is the unlabelled speed. In the last decade numerous results have been proved about the labelled speeds of hereditary properties, with emphasis on the striking phenomenon that only certain speeds are possible: there are various pairs of functions (f(n),F(n)), with F(n) much larger than f(n), such that if the labelled speed is infinitely often larger than f(n) then it is also larger than F(n) for all sufficiently large values of n. Putting it concisely: the speed jumps from f(n) to F(n). Recent work on hereditary graph properties has shown that “large” and “small” labelled speeds of hereditary graph properties do jump.The aim of this paper is to study the unlabelled speed of a hereditary property, with emphasis on jumps. Among other results, we shall show that the unlabelled speed of a hereditary graph property is either of polynomial order or at least S(n), the number of ways of partitioning a set with n indistinguishable elements

    Számelmélet és kombinatorikus vonatkozásai = Number Theory and its Interactions with Combinatorics

    Get PDF
    A kutatók számos érdekes eredményt értek el a kombinatorikus számelmélet és geometria, gráfelmélet, diofantikus approximáció területén, itt csak néhányat említünk. Elekes és Ruzsa a Freiman, Balog-Szemerédi és Laczkovich-Ruzsa tételek közös általánosítását adják, ezzel a témakört egységesítik, és számos kombinatorikus geometriai tételt fejlesztenek tovább. Elekes Szabó E.-vel áttörést ért el a sok szabályosságot tartalmazó konfigurációk karakterizációjának általános problémájában, néhány korábbi eredményt jelentősen továbbfejlesztve. Szemerédi A. Khalfalah-val igazolja Sárközy, Roth és T. Sós azon sejtését, hogy: ha beosztjuk az egész számokat véges sok osztályba, akkor valamely osztályban van két olyan szám, amelyek összege négyzetszám, V. Vu-val közösen pedig Folkman egy sejtését bizonyítja. Biró javítja Ruzsa és Kolountzakis egész számok parkettázására vonatkozó eredményét. Erősíti és általánosítja a "karakterizáló sorozatok" témakör korábbi eredményeit. Ruzsa és B. Green meghatározzák tetszőleges véges kommutatív csoportban a legnagyobb összegmentes halmaz elemszámát. T. Sós Lovász L.-val megmutatja, hogy ha gráfok egy sorozatában a kis részgráfoknak ugyanaz az eloszlása, mint egy általánosított G véletlen gráfban, akkor ezen gráfoknak aszimptotikusan olyan struktúrája van, mint G-nek. T. Sós társszerzőkkel azt az alapkérdést vizsgálja, mikor van közel egymáshoz két gráf. | The participants obtaind several interesting results in combinatorial number theory and geometry, graph theory, diophantine approximation, we list just a few of these results.. Elekes and Ruzsa give a common generalization of the Freiman, Balog-Szemerédi and Laczkovich-Ruzsa theorems, unifying in this way the subject and improving a lot of earlier results. Elekes with E. Szabó achieved a breakthrough in the general problem of characterizing configurations having a lot of reguarity, improving some earlier results. Szemerédi with A. Khalfalah proves the follwing conjecture of Sárközy, Roth and T. Sós: if we divide the set of integers into finitely many classes, then in one of the classes we can find two numbers such that their sum is a square, and with V. Vu he proves a conjecture of Folkman. Biró improves a result of Ruzsa and Kolountzakis on tilings of the integers, and, he proves generalizations and strengthenings of some results in the subject 'characterizing sequences'. Ruzsa and B. Green determine the size of the largest sumfree set in an arbitrary finite Abelian group. L. Lovász and T. Sós showed that generalized quasirandom sequences (whose subgraph densities match those of a fixed finite weighted graph) have a finite structure. T. Sós with co-authors defines the distance of two graphs that reflects the similarity , the closeness of both local and global properties

    Graph properties, graph limits and entropy

    Full text link
    We study the relation between the growth rate of a graph property and the entropy of the graph limits that arise from graphs with that property. In particular, for hereditary classes we obtain a new description of the colouring number, which by well-known results describes the rate of growth. We study also random graphs and their entropies. We show, for example, that if a hereditary property has a unique limiting graphon with maximal entropy, then a random graph with this property, selected uniformly at random from all such graphs with a given order, converges to this maximizing graphon as the order tends to infinity.Comment: 24 page

    Hereditary properties of combinatorial structures: posets and oriented graphs

    Full text link
    A hereditary property of combinatorial structures is a collection of structures (e.g. graphs, posets) which is closed under isomorphism, closed under taking induced substructures (e.g. induced subgraphs), and contains arbitrarily large structures. Given a property P, we write P_n for the collection of distinct (i.e., non-isomorphic) structures in a property P with n vertices, and call the function n -> |P_n| the speed (or unlabelled speed) of P. Also, we write P^n for the collection of distinct labelled structures in P with vertices labelled 1,...,n, and call the function n -> |P^n| the labelled speed of P. The possible labelled speeds of a hereditary property of graphs have been extensively studied, and the aim of this paper is to investigate the possible speeds of other combinatorial structures, namely posets and oriented graphs. More precisely, we show that (for sufficiently large n), the labelled speed of a hereditary property of posets is either 1, or exactly a polynomial, or at least 2^n - 1. We also show that there is an initial jump in the possible unlabelled speeds of hereditary properties of posets, tournaments and directed graphs, from bounded to linear speed, and give a sharp lower bound on the possible linear speeds in each case.Comment: 26 pgs, no figure

    Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020)

    Get PDF
    International audienceOriginating in arithmetics and logic, the theory of ordered sets is now a field of combinatorics that is intimately linked to graph theory, universal algebra and multiple-valued logic, and that has a wide range of classical applications such as formal calculus, classification, decision aid and social choice.This international conference “Algebras, graphs and ordered set” (ALGOS) brings together specialists in the theory of graphs, relational structures and ordered sets, topics that are omnipresent in artificial intelligence and in knowledge discovery, and with concrete applications in biomedical sciences, security, social networks and e-learning systems. One of the goals of this event is to provide a common ground for mathematicians and computer scientists to meet, to present their latest results, and to discuss original applications in related scientific fields. On this basis, we hope for fruitful exchanges that can motivate multidisciplinary projects.The first edition of ALgebras, Graphs and Ordered Sets (ALGOS 2020) has a particular motivation, namely, an opportunity to honour Maurice Pouzet on his 75th birthday! For this reason, we have particularly welcomed submissions in areas related to Maurice’s many scientific interests:• Lattices and ordered sets• Combinatorics and graph theory• Set theory and theory of relations• Universal algebra and multiple valued logic• Applications: formal calculus, knowledge discovery, biomedical sciences, decision aid and social choice, security, social networks, web semantics..
    corecore