8 research outputs found

    Dualities in modal logic

    Get PDF
    Categorical dualities are an important tool in the study of (modal) logics. They offer conceptual understanding and enable the transfer of results between the different semantics of a logic. As such, they play a central role in the proofs of completeness theorems, Sahlqvist theorems and Goldblatt-Thomason theorems. A common way to obtain dualities is by extending existing ones. For example, Jonsson-Tarski duality is an extension of Stone duality. A convenient formalism to carry out such extensions is given by the dual categorical notions of algebras and coalgebras. Intuitively, these allow one to isolate the new part of a duality from the existing part. In this thesis we will derive both existing and new dualities via this route, and we show how to use the dualities to investigate logics. However, not all (modal logical) paradigms fit the (co)algebraic perspective. In particular, modal intuitionistic logics do not enjoy a coalgebraic treatment, and there is a general lack of duality results for them. To remedy this, we use a generalisation of both algebras and coalgebras called dialgebras. Guided by the research field of coalgebraic logic, we introduce the framework of dialgebraic logic. We show how a large class of modal intuitionistic logics can be modelled as dialgebraic logics and we prove dualities for them. We use the dialgebraic framework to prove general completeness, Hennessy-Milner, representation and Goldblatt-Thomason theorems, and instantiate this to a wide variety of modal intuitionistic logics. Additionally, we use the dialgebraic perspective to investigate modal extensions of the meet-implication fragment of intuitionistic logic. We instantiate general dialgebraic results, and describe how modal meet-implication logics relate to modal intuitionistic logics

    Bunched logics: a uniform approach

    Get PDF
    Bunched logics have found themselves to be key tools in modern computer science, in particular through the industrial-level program verification formalism Separation Logic. Despite this—and in contrast to adjacent families of logics like modal and substructural logic—there is a lack of uniform methodology in their study, leaving many evident variants uninvestigated and many open problems unresolved. In this thesis we investigate the family of bunched logics—including previously unexplored intuitionistic variants—through two uniform frameworks. The first is a system of duality theorems that relate the algebraic and Kripke-style interpretations of the logics; the second, a modular framework of tableaux calculi that are sound and complete for both the core logics themselves, as well as many classes of bunched logic model important for applications in program verification and systems modelling. In doing so we are able to resolve a number of open problems in the literature, including soundness and completeness theorems for intuitionistic variants of bunched logics, classes of Separation Logic models and layered graph models; decidability of layered graph logics; a characterisation theorem for the classes of bunched logic model definable by bunched logic formulae; and the failure of Craig interpolation for principal bunched logics. We also extend our duality theorems to the categorical structures suitable for interpreting predicate versions of the logics, in particular hyperdoctrinal structures used frequently in Separation Logic

    Counterfactuals 2.0 Logic, Truth Conditions, and Probability

    Get PDF
    The present thesis focuses on counterfactuals. Specifically, we will address new questions and open problems that arise for the standard semantic accounts of counterfactual conditionals. The first four chapters deal with the Lewisian semantic account of counterfactuals. On a technical level, we contribute by providing an equivalent algebraic semantics for Lewis' variably strict conditional logics, which is notably absent in the literature. We introduce a new kind of algebra and differentiate between local and global versions of each of Lewis' variably strict conditional logics. We study the algebraic properties of Lewis' logics and the structure theory of our newly introduced algebras. Additionally, we employ a new algebraic construction, based on the framework of Boolean algebras of conditionals, to provide an alternative semantics for Lewisian counterfactual conditionals. This semantic account allows us to establish new truth conditions for Lewisian counterfactuals, implying that Lewisian counterfactuals are definable conditionals, and each counterfactual can be characterized as a modality of a corresponding probabilistic conditional. We further extend these results by demonstrating that each Lewisian counterfactual can also be characterized as a modality of the corresponding Stalnaker conditional. The resulting formal semantic framework is much more expressive than the standard one and, in addition to providing new truth conditions for counterfactuals, it also allows us to define a new class of conditional logics falling into the broader framework of weak logics. On the philosophical side, we argue that our results shed new light on the understanding of Lewisian counterfactuals and prompt a conceptual shift in this field: Lewisian counterfactual dependence can be understood as a modality of probabilistic conditional dependence or Stalnakerian conditional dependence. In other words, whether a counterfactual connection occurs between A and B depends on whether it is "necessary" for a Stalnakerian/probabilistic dependence to occur between A and B. We also propose some ways to interpret the kind of necessity involved in this interpretation. The remaining two chapters deal with the probability of counterfactuals. We provide an answer to the question of how we can characterize the probability that a Lewisian counterfactual is true, which is an open problem in the literature. We show that the probability of a Lewisian counterfactual can be characterized in terms of belief functions from Dempster-Shafer theory of evidence, which are a super-additive generalization of standard probability. We define an updating procedure for belief functions based on the imaging procedure and show that the probability of a counterfactual A > B amounts to the belief function of B imaged on A. This characterization strongly relies on the logical results we proved in the previous chapters. Moreover, we also solve an open problem concerning the procedure to assign a probability to complex counterfactuals in the framework of causal modelling semantics. A limitation of causal modelling semantics is that it cannot account for the probability of counterfactuals with disjunctive antecedents. Drawing on the same previous works, we define a new procedure to assign a probability to counterfactuals with disjunctive antecedents in the framework of causal modelling semantics. We also argue that our procedure is satisfactory in that it yields meaningful results and adheres to some conceptually intuitive constraints one may want to impose when computing the probability of counterfactuals
    corecore