136,139 research outputs found

    On the Power of Conditional Samples in Distribution Testing

    Full text link
    In this paper we define and examine the power of the {\em conditional-sampling} oracle in the context of distribution-property testing. The conditional-sampling oracle for a discrete distribution μ\mu takes as input a subset S⊂[n]S \subset [n] of the domain, and outputs a random sample i∈Si \in S drawn according to μ\mu, conditioned on SS (and independently of all prior samples). The conditional-sampling oracle is a natural generalization of the ordinary sampling oracle in which SS always equals [n][n]. We show that with the conditional-sampling oracle, testing uniformity, testing identity to a known distribution, and testing any label-invariant property of distributions is easier than with the ordinary sampling oracle. On the other hand, we also show that for some distribution properties the sample-complexity remains near-maximal even with conditional sampling

    Testing Properties of Multiple Distributions with Few Samples

    Get PDF
    We propose a new setting for testing properties of distributions while receiving samples from several distributions, but few samples per distribution. Given samples from ss distributions, p1,p2,…,psp_1, p_2, \ldots, p_s, we design testers for the following problems: (1) Uniformity Testing: Testing whether all the pip_i's are uniform or ϵ\epsilon-far from being uniform in ℓ1\ell_1-distance (2) Identity Testing: Testing whether all the pip_i's are equal to an explicitly given distribution qq or ϵ\epsilon-far from qq in ℓ1\ell_1-distance, and (3) Closeness Testing: Testing whether all the pip_i's are equal to a distribution qq which we have sample access to, or ϵ\epsilon-far from qq in ℓ1\ell_1-distance. By assuming an additional natural condition about the source distributions, we provide sample optimal testers for all of these problems.Comment: ITCS 202

    Approximate reasoning for real-time probabilistic processes

    Full text link
    We develop a pseudo-metric analogue of bisimulation for generalized semi-Markov processes. The kernel of this pseudo-metric corresponds to bisimulation; thus we have extended bisimulation for continuous-time probabilistic processes to a much broader class of distributions than exponential distributions. This pseudo-metric gives a useful handle on approximate reasoning in the presence of numerical information -- such as probabilities and time -- in the model. We give a fixed point characterization of the pseudo-metric. This makes available coinductive reasoning principles for reasoning about distances. We demonstrate that our approach is insensitive to potentially ad hoc articulations of distance by showing that it is intrinsic to an underlying uniformity. We provide a logical characterization of this uniformity using a real-valued modal logic. We show that several quantitative properties of interest are continuous with respect to the pseudo-metric. Thus, if two processes are metrically close, then observable quantitative properties of interest are indeed close.Comment: Preliminary version appeared in QEST 0
    • …
    corecore