81,502 research outputs found

    Duality for pathwise superhedging in continuous time

    Get PDF
    We provide a model-free pricing-hedging duality in continuous time. For a frictionless market consisting of dd risky assets with continuous price trajectories, we show that the purely analytic problem of finding the minimal superhedging price of a path dependent European option has the same value as the purely probabilistic problem of finding the supremum of the expectations of the option over all martingale measures. The superhedging problem is formulated with simple trading strategies, the claim is the limit inferior of continuous functions, which allows for upper and lower semi-continuous claims, and superhedging is required in the pathwise sense on a σ\sigma-compact sample space of price trajectories. If the sample space is stable under stopping, the probabilistic problem reduces to finding the supremum over all martingale measures with compact support. As an application of the general results we deduce dualities for Vovk's outer measure and semi-static superhedging with finitely many securities

    Modelling potential movement in constrained travel environments using rough space-time prisms

    Get PDF
    The widespread adoption of location-aware technologies (LATs) has afforded analysts new opportunities for efficiently collecting trajectory data of moving individuals. These technologies enable measuring trajectories as a finite sample set of time-stamped locations. The uncertainty related to both finite sampling and measurement errors makes it often difficult to reconstruct and represent a trajectory followed by an individual in space-time. Time geography offers an interesting framework to deal with the potential path of an individual in between two sample locations. Although this potential path may be easily delineated for travels along networks, this will be less straightforward for more nonnetwork-constrained environments. Current models, however, have mostly concentrated on network environments on the one hand and do not account for the spatiotemporal uncertainties of input data on the other hand. This article simultaneously addresses both issues by developing a novel methodology to capture potential movement between uncertain space-time points in obstacle-constrained travel environments
    corecore