505 research outputs found

    PSO algorithm-based robust design of PID controller for variable time-delay systems: AQM application

    Get PDF
    This paper formulates a robust control for variable time-delay system models. An automatic tuning method for PID-type controller is proposed. The adopted method integrates robust control design using Quantitative Feedback Theory (QFT) with Particle Swan Optimization heuristic algorithms (PSO) to systematize the loop-shaping stage. The objective of the design method is to reach a good compromise among robust stability, robust tracking and disturbance rejection with minimal control effort. The resulting algorithm has attractive features, such as easy implementation, stable convergence characteristic and good computational efficiency. In particular, the results of the control design for active queue management (AQM) systems are presented. Simulations show improved congestion control and quality of service in TCP communication networks.Facultad de Informátic

    Smith predictor based controller design for a flexible robot arm

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent Univ., 2013.Includes bibliographical references leaves 47-49.In this thesis, a new Smith predictor based controller is proposed for a flexible robot arm. A typical robot arm model includes high order modes with integral action from torque input to velocity output. Here we can also consider the effect of possible delays between the plant and the controller. The controller structure considered has an extended Smith predictor form. The designs use controller parametrization for stability and they also achieve certain performance objectives via interpolation conditions based on the disturbance rejection and setpoint tracking properties. This parametrization method allows widest freedom in controller parameters and this results in improved performance, both in set-point response and disturbance rejection. Free parameters in the controller determines the location of closed-loop poles. A hierarchical structure is used to extend Smith predictor structure to the position control loop. By protecting proposed structure, different approaches are shown to control the position. Compared to existing Smith predictor based designs, disturbance attenuation property with respect to periodic disturbances at a known frequency is improved. A two-degree of freedom controller structure is shown to be helpful in shaping the transient response under constant reference inputs. Stability robustness properties of this system are also investigated. Simulation results demonstrate the effectiveness of the proposed controller.Taşdelen, Uğu

    PSO algorithm-based robust design of PID controller for variable time-delay systems: AQM application

    Get PDF
    This paper formulates a robust control for variable time-delay system models. An automatic tuning method for PID-type controller is proposed. The adopted method integrates robust control design using Quantitative Feedback Theory (QFT) with Particle Swan Optimization heuristic algorithms (PSO) to systematize the loop-shaping stage. The objective of the design method is to reach a good compromise among robust stability, robust tracking and disturbance rejection with minimal control effort. The resulting algorithm has attractive features, such as easy implementation, stable convergence characteristic and good computational efficiency. In particular, the results of the control design for active queue management (AQM) systems are presented. Simulations show improved congestion control and quality of service in TCP communication networks.Facultad de Informátic

    Bandwith allocation and scheduling in photonic networks

    Get PDF
    This thesis describes a framework for bandwidth allocation and scheduling in the Agile All-Photonic Network (AAPN). This framework is also applicable to any single-hop communication network with significant signalling delay (such as satellite-TDMA systems). Slot-by-slot scheduling approaches do not provide adequate performance for wide-area networks, so we focus on frame-based scheduling. We propose three novel fixed-length frame scheduling algorithms (Minimum Cost Search, Fair Matching and Minimum Rejection) and a feedback control system for stabilization.MCS is a greedy algorithm, which allocates time-slots sequentially using a cost function. This function is defined such that the time-slots with higher blocking probability are assigned first. MCS does not guarantee 100% throughput, thought it has a low blocking percentage. Our optimum scheduling approach is based on modifying the demand matrix such that the network resources are fully utilized, while the requests are optimally served. The Fair Matching Algorithm (FMA) uses the weighted max-min fairness criterion to achieve a fair share of resources amongst the connections in the network. When rejection is inevitable, FMA selects rejections such that the maximum percentage rejection experienced in the network is minimized. In another approach we formulate the rejection task as an optimization problem and propose the Minimum Rejection Algorithm (MRA), which minimizes total rejection. The minimum rejection problem is a special case of maximum flow problem. Due to the complexity of the algorithms that solve the max-flow problem we propose a heuristic algorithm with lower complexity.Scheduling in wide-area networks must be based on predictions of traffic demand and the resultant errors can lead to instability and unfairness. We design a feedback control system based on Smith's principle, which removes the destabilizing delays from the feedback loop by using a "loop cancelation" technique. The feedback control system we propose reduces the effect of prediction errors, increasing the speed of the response to sudden changes in traffic arrival rates and improving the fairness in the network through equalization of queue-lengths

    Delay-Compound-Compensation Control for Photoelectric Tracking System Based on Improved Smith Predictor Scheme

    Get PDF

    Modeling and Control of Server-based Systems

    Get PDF
    When deploying networked computing-based applications, proper resource management of the server-side resources is essential for maintaining quality of service and cost efficiency. The work presented in this thesis is based on six papers, all investigating problems that relate to resource management of server-based systems. Using a queueing system approach we model the performance of a database system being subjected to write-heavy traffic. We then evaluate the model using simulations and validate that it accurately mimics the behavior of a real test bed. In collaboration with Ericsson we model and design a per-request admission control scheme for a Mobile Service Support System (MSS). The model is then validated and the control scheme is evaluated in a test bed. Also, we investigate the feasibility to estimate the state of a server in an MSS using an event-based Extended Kalman Filter. In the brownout paradigm of server resource management, the amount of work required to serve a client is adjusted to compensate for temporary resource shortages. In this thesis we investigate how to perform load balancing over self-adaptive server instances. The load balancing schemes are evaluated in both simulations and test bed experiments. Further, we investigate how to employ delay-compensated feedback control to automatically adjust the amount of resources to deploy to a cloud application in the presence of a large, stochastic delay. The delay-compensated control scheme is evaluated in simulations and the conclusion is that it can be made fast and responsive compared to an industry-standard solution

    Robust Controller for Delays and Packet Dropout Avoidance in Solar-Power Wireless Network

    Get PDF
    Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefore able to continue for a long period. SWNCS also offers multi Service infrastructure solution for both developed and undeveloped countries. The system provides wireless controller lighting, wireless communications network (WI-FI/WIMAX), CCTV surveillance, and wireless sensor for weather measurement which are all powered by solar energy

    LHC Beam Stability and Feedback Control - Orbit and Energy -

    Get PDF
    This report presents the stability and control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The LHC, presently being built at CERN, will store, accelerate and provide particle collisions with a maximum particle momentum of 7TeV/c and a nominal luminosity of L = 10^34 cm^â2s^â1. The presence of two beams, with both high intensity as well as high particle energies, requires excellent control of particle losses inside a superconducting environment, which will be provided by the LHC Cleaning and Machine Protection System. The performance and function of this and other systems depends critically on the stability of the beam and may eventually limit the LHC performance. Environmental and accelerator-inherent sources as well as failure of magnets and their power converters may perturb and reduce beam stability and may consequently lead to an increase of particle loss inside the cryogenic mass. In order to counteract these disturbances, control of the key beam parameters â orbit, tune, energy, coupling and chromaticity â will be an integral part of LHC operation. Since manual correction of these parameters may reach its limit with respect to required precision and expected time-scales, the LHC is the first proton collider that requires automatic feedback control systems for safe and reliable machine operation. The aim of this report is to help and contribute towards these efforts

    Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility

    Get PDF
    According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies
    corecore