8 research outputs found

    Quantum Bilinear Optimization

    Get PDF
    We study optimization programs given by a bilinear form over noncommutative variables subject to linear inequalities. Problems of this form include the entangled value of two-prover games, entanglement-assisted coding for classical channels, and quantum-proof randomness extractors. We introduce an asymptotically converging hierarchy of efficiently computable semidefinite programming (SDP) relaxations for this quantum optimization. This allows us to give upper bounds on the quantum advantage for all of these problems. Compared to previous work of Pironio, Navascués, and Acín [SIAM J. Optim., 20 (2010), pp. 2157-2180], our hierarchy has additional constraints. By means of examples, we illustrate the importance of these new constraints both in practice and for analytical properties. Moreover, this allows us to give a hierarchy of SDP outer approximations for the completely positive semidefinite cone introduced by Laurent and Piovesan

    Lower bounds on matrix factorization ranks via noncommutative polynomial optimization

    Get PDF
    We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the completely positive rank, and their symmetric analogues: the positive semidefinite rank and the completely positive semidefinite rank. We study the convergence properties of our hierarchies, compare them extensively to known lower bounds, and provide some (numerical) examples

    The tracial moment problem and trace-optimization of polynomials

    No full text
    The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f, what is the smallest trace f(A) can attain for a tuple of matrices A? A relaxation using semide nite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, it gives e ectively computable bounds on the optima. To test for exactness, the solution of the dual SDP is investigated. If it satis es a certain condition called atness, then the relaxation is exact. In this case it is shown how to extract global trace-optimizers with a procedure based on two ingredients. The first is the solution to the truncated tracial moment problem, and the other crucial component is the numerical implementation of the Artin-Wedderburn theorem for matrix -algebras due to Murota, Kanno, Kojima, Kojima, and Maehara. Trace-optimization of nc polynomials is a nontrivial extension of polynomial optimization in commuting variables on one side and eigenvalue optimization of nc polynomials on the other side { two topics with many applications, the most prominent being to linear systems engineering and quantum physics. The optimization problems discussed here facilitate new possibilities for applications, e.g. in operator algebras and statistical physics

    THE TRACIAL MOMENT PROBLEM AND TRACE-OPTIMIZATION OF POLYNOMIALS

    No full text
    Abstract. The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f, what is the smallest trace f(A) can attain for a tuple of matrices A? A relaxation using semidefinite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, it gives effectively computable bounds on the optima. To test for exactness, the solution of the dual SDP is investigated. If it satisfies a certain condition called flatness, then the relaxation is exact. In this case it is shown how to extract global trace-optimizers with a procedure based on two ingredients. The first is the solution to the truncated tracial moment problem, and the other crucial component is the numerical implementation of the Artin-Wedderburn theorem for matrix ∗-algebras due to Murota, Kanno, Kojima, Kojima, and Maehara. Trace-optimization of nc polynomials is a nontrivial extension of polynomial optimization in commuting variables on one side and eigenvalue optimization of nc polynomials on the other side – two topics with many applications, the most prominent being to linear systems engineering and quantum physics. The optimization problems discussed here facilitate new possibilities for applications, e.g. in operator algebras and statistical physics. 1

    Povh: The tracial moment problem and trace-optimization of polynomials

    No full text
    Abstract. The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f , what is the smallest trace f (A) can attain for a tuple of matrices A ? A relaxation using semidefinite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, it gives effectively computable bounds on the optima. To test for exactness, the solution of the dual SDP is investigated. If it satisfies a certain condition called flatness, then the relaxation is exact. In this case it is shown how to extract global trace-optimizers with a procedure based on two ingredients. The first is the solution to the truncated tracial moment problem, and the other crucial component is the numerical implementation of the Artin-Wedderburn theorem for matrix * -algebras due to Murota, Kanno, Kojima, Kojima, and Maehara. Trace-optimization of nc polynomials is a nontrivial extension of polynomial optimization in commuting variables on one side and eigenvalue optimization of nc polynomials on the other side -two topics with many applications, the most prominent being to linear systems engineering and quantum physics. The optimization problems discussed here facilitate new possibilities for applications, e.g. in operator algebras and statistical physics
    corecore