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Abstract

We use techniques from (tracial noncommutative) polynomial optimization to formulate
hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In par-
ticular, we consider the nonnegative rank, the completely positive rank, and their symmetric
analogues: the positive semidefinite rank and the completely positive semidefinite rank. We
study the convergence properties of our hierarchies, compare them extensively to known
lower bounds, and provide some (numerical) examples.

Contents
1 Introduction 2

1.1 Matrix factorization ranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions and connections to existing bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Basic approach and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Commutative and tracial polynomial optimization 6
2.1 Flat extensions and representations of linear forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Specialization to the commutative setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Commutative and tracial polynomial optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Lower bounds on the completely positive semidefinite rank 12

3.1 The parameters ξcpsd∞ (A) and ξcpsd∗ (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Additional localizing constraints to improve on ξcpsd∗ (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Boosting the bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Additional properties of the bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Lower bounds on the completely positive rank 21
4.1 Comparison to τ soscp (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Convergence of the basic hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Additional constraints and convergence to τcp(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 More efficient tensor constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Computational examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Lower bounds on the nonnegative rank 28
5.1 Comparison to other bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Computational examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Lower bounds on the positive semidefinite rank 32
6.1 Comparison to other bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Computational examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Discussion and future work 35

A Proofs 36

2010 Mathematics Subject Classification. 15B48, 15A23, 90C22
∗CWI, the Netherlands. Supported by the Netherlands Organization for Scientific Research, grant number

617.001.351. gribling@cwi.nl
†CWI, the Netherlands. Supported by the Netherlands Organization for Scientific Research, grant number

617.001.351, and by the ERC Consolidator Grant QPROGRESS 615307. mail@daviddelaat.nl
‡CWI and Tilburg University, the Netherlands. laurent@cwi.nl

1

ar
X

iv
:1

70
8.

01
57

3v
1 

 [
m

at
h.

O
C

] 
 4

 A
ug

 2
01

7
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301636186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

1.1 Matrix factorization ranks

A factorization of a matrix A ∈ Rm×n over a sequence of cones {Kd}, each equipped with an
inner product, is a decomposition of the form Aij = 〈Xi, Yj〉 with Xi, Yj ∈ Kd for all i, j. The
smallest d for which such a factorization exists is called the cone factorization rank of A over
{Kd} [GPT13]. An important example is the nonnegative rank, denoted rank+(A), where Kd

is the nonnegative orthant Rd+ with the standard inner product. Another important example is
the positive semidefinite rank, denoted psd-rankR(A), where Kd is the positive semidefinite cone
Sd+ with the trace inner product 〈X,Y 〉 = Tr(XTY ). Both the nonnegative rank and positive
semidefinite rank are defined whenever A is entrywise nonnegative.

The study of the nonnegative rank is largely motivated by the groundbreaking work of Yan-
nakakis [Yan91], who showed that the linear extension complexity of a polytope P is given by
the nonnegative rank of its slack matrix. The linear extension complexity of P is the smallest
integer d for which P is the linear image of an affine section of the nonnegative orthant Rd+, and
the slack matrix of P is given by (bi − aTi v)v∈V,i∈I when P = conv(V ) = {x : aTi x ≤ bi (i ∈ I)}.
Analogously, the semidefinite extension complexity of P is the smallest d such that P is the
linear image of an affine section of the cone Sd+ [GPT13]. The motivation to study exten-
sion complexity is that polytopes with small extension complexity admit efficient algorithms
for linear optimization. Well-known examples include spanning tree polytopes [Mar91] and
permutahedra [Goe15], which have polynomial linear extension complexity, and the stable set
polytope of perfect graphs, which has polynomial semidefinite extension complexity [MGS81]
(see, e.g., the surveys [CCZ10, FGP+15]). The above connection to matrix factorization ranks
can be used to show that a polytope does not admit a small extended formulation. Recently this
connection was used to show that the linear extension complexities of the traveling salesman,
cut, and stable set polytopes are exponential in the number of nodes [FMP+15], and this result
was extended to their semidefinite extension complexities in [LRS15]. Surprisingly, the linear
extension complexity of the matching polytope is also exponential [Rot14], even though linear
optimization over this set is polynomial time solvable [Edm65]. It is an open question whether
the semidefinite extension complexity of the matching polytope is exponential.

Besides applications in extension complexity, the nonnegative rank also finds applications in
probability and communication complexity, and the positive semidefinite rank has applications
in quantum information theory and quantum communication complexity (see, e.g., [MSvS03,
FFGT15, JSWZ13, FMP+15]).

We are also interested in symmetric analogues of the above matrix factorization ranks, where
we require the same factors for the rows and columns (m = n and Xi = Yi for all i). Analogously
to the nonnegative rank, we consider the completely positive rank, denoted cp-rank(A), where
Kd = Rd+. We also consider the completely positive semidefinite rank, denoted cpsd-rankK(A),
with Kd = Sd+ if K = R and Kd = Hd+ if K = C, where Hd+ is the cone of complex Hermitian
positive semidefinite matrices with the trace inner product 〈X,Y 〉 = Tr(X∗Y ). The symmetric
matrices for which these parameters are well defined form convex cones known as the completely
positive cone, denoted CPn, and the completely positive semidefinite cone, denoted CSn+. We
have the inclusions CPn ⊆ CSn+ ⊆ Sn+, which are strict for n ≥ 5. For details on these cones
see [BSM03, LP15].

Motivation for the cones CPn and CSn+ comes in particular from their use to model classi-
cal and quantum information optimization problems. Graph parameters such as the stability
number and the chromatic number can be written as linear optimization problems over the com-
pletely positive cone [dKP02] and the same holds, more generally, for any quadratic problem
with mixed binary variables [Bur09]. The cp-rank is widely studied in the linear algebra com-
munity; see, e.g., [BSM03, SMBJS13, SMBB+15, BSU14]. The completely positive semidefinite
cone was first studied in [LP15] to describe quantum analogues of the stability number and chro-
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matic number of a graph, which was later extended to general graph homomorphisms [SV17]
and graph isomorphism [AMR+16]. An additional connection between the completely positive
semidefinite cone and the set of quantum correlations is shown in [MR14, SV17]. This also
gives a relation between the completely positive semidefinite rank and the minimal entangle-
ment dimension necessary to realize a quantum correlation. This connection has been used
in [PSVW16, GdLL17a, PV17] to construct matrices whose completely positive semidefinite
rank is exponentially large in the matrix size. For the special case of synchronous quantum cor-
relations the minimum entanglement dimension is given by the completely positive semidefinite
rank of a certain matrix (see [GdLL17b]).

We may also consider the parameter psd-rankC(A), obtained by using asymmetric fac-
torizations by complex Hermitian positive semidefinite matrices. We have psd-rankC(A) ≤
psd-rankR(A) ≤ rank+(A) ≤ min{m,n} and cp-rank(A) ≤

(
n+1

2

)
, but the situation for the

cpsd-rank is very different. Exploiting the connection between the completely positive semidef-
inite cone and quantum correlations it follows from results in [Slo17] that the cone CSn+ is not
closed for n ≥ 1942, so there does not exist an upper bound on the cpsd-rank as a function of
the matrix size. For small matrix sizes very little is known. It is an open problem whether CS5

+

is closed, and we do not know how to construct a 5× 5 matrix whose cpsd-rank exceeds 5.
The rank+, cp-rank, and psd-rank are known to be computable (using results from [Ren92],

since upper bounds exist on these factorization ranks; see [BR06] for cp-rank). But computing
the nonnegative rank is NP-complete [Vav09] and the psd-rank is existential theory of the
reals complete [Shi16]. For the cp-rank and cpsd-rank no such results are known, but there
is no reason to assume they are any easier. In fact it is not even clear whether the cpsd-
rank is computable in general. To obtain upper bounds one can employ heuristics that try
to construct small factorizations. Many such heuristics exist for the nonnegative rank (see the
overview [Gil17] and references therein), factorization algorithms exist for structured completely
positive matrices (see [DD12]), and algorithms to compute positive semidefinite factorizations
are presented in the recent work [VGG17]. In this paper we want to compute lower bounds,
which we achieve by employing a relaxation approach based on (noncommutative) polynomial
optimization.

1.2 Contributions and connections to existing bounds

In this work we provide a unified approach to obtain lower bounds on the above mentioned
matrix factorization ranks, based on tools from (noncommutative) polynomial optimization.

We introduce in Section 3 our approach for the completely positive semidefinite rank. We
start by defining a hierarchy of lower bounds

ξcpsd
1 (A) ≤ ξcpsd

2 (A) ≤ . . . ≤ cpsd-rankC(A),

where ξcpsd
t (A), for t ∈ N, is given as the optimal value of a semidefinite program whose size

increases with t. Not much is known about lower bounds for the cpsd-rank in the literature.
The inequality

√
rank(A) ≤ cpsd-rankC(A) follows by viewing a Hermitian d × d matrix as

a d2-dimensional real vector, and an analytic lower bound is given in [PSVW16]. We show
ξcpsd

1 (A) is at least as good as this analytic lower bound and we give a small example where
a strengthening of ξcpsd

2 (A) is strictly better then both above mentioned generic lower bounds.
Currently we lack evidence that the lower bounds ξcpsd

t (A) can be larger than, for example,
the matrix size, but this could be because small matrices with large cpsd-rank are hard to
construct or might not exist. We also introduce several ideas leading to strengthenings of the
basic bounds ξcpsd

t (A). We then adapt these ideas to the other three matrix factorization ranks
discussed above, where for each of them we obtain analogous hierarchies of bounds.

For the nonnegative rank and completely positive rank much more is known about lower
bounds. The best known generic lower bounds are due to Fawzi and Parrilo [FP15, FP16].
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In [FP16] the parameters τ+(A) and τcp(A) are defined, which, respectively, lower bound the
nonnegative rank and the cp-rank, along with their computable semidefinite programming re-
laxations τ sos

+ (A) and τ sos
cp (A). In [FP16] it is also shown that τ+(A) is at least as good as

certain norm-based lower bounds. In particular, τ+ is at least as good as the `∞ norm-based
lower bound, which was used by Rothvoß [Rot14] to show that the matching polytope has ex-
ponential linear extension complexity. In [FP15] it is shown that for the Frobenius norm, the
square of the norm-based bound is still a lower bound on the nonnegative rank, but it is not
known how this lower bound compares to τ+.

Fawzi and Parrilo [FP16] use the atomicity of the nonnegative and completely positive ranks
to derive the parameters τ+(A) and τcp(A); i.e., they use the fact that the nonnegative rank
(cp-rank) is equal to the smallest d for which A can be written as A =

∑d
k=1Rk, where each

Rk is a nonnegative (positive semidefinite) rank one matrix. As the psd-rank and cpsd-rank
are not known to admit atomic formulations, the techniques from [FP16] do not extend directly
to these factorization ranks. However, our approach via polynomial optimization permits to
capture these factorization ranks as well.

In Sections 4 and 5 we construct semidefinite programming hierarchies of lower bounds
ξcp
t (A) and ξ+

t (A) on cp-rank(A) and rank+(A). We show that ξ+
t (A) converges to τ+(A) as

t→∞. The basic hierarchy ξcp
t (A) for the cp-rank does not converge to τcp(A), but we provide

two types of additional constraints that can be added to ξcp
t (A) to ensure convergence to τcp(A).

First, we show how a generalization of the tensor constraints that are used in the definition of
the parameter τ sos

cp (A) can be used for this, and we also give a more efficient (using smaller
matrix blocks) description of these constraints. This strengthening of ξcp

2 (A) is then at least as
strong as τ sos

cp (A), but requires matrix variables of roughly half the size. Alternatively, we show
that for every ε > 0 there is a finite number of additional linear constraints that can be added
to the basic hierarchy ξcp

t (A) so that the limit of the sequence of these new lower bounds is at
least τcp(A)− ε. We give numerical results on small matrices studied in the literature, and we
show that ξ+

3 (A) can improve over τ sos
+ (A) for examples studied in [FP16].

Finally, in Section 6 we derive a hierarchy ξpsd
t (A) of lower bounds on the psd-rank. We com-

pare the bounds ξpsd
t (A) to a bound from [LWdW17] and we provide some numerical examples

illustrating the performance of our bounds.
We provide two implementations of all lower bounds introduced in this paper, at the arXiv

submission of this paper. One implementation uses Matlab and the CVX package [GB14], and
the other uses Julia [BEKS17]. The implementations support various SDP solvers, for our
numerical examples we used Mosek [ApS17].

1.3 Basic approach and notation

We use (noncommutative) polynomial optimization to define hierarchies of relaxations for the
problem of finding smallest possible matrix factorization ranks.

In classical polynomial optimization the problem is to find the global minimum of a poly-
nomial over a semialgebraic set of the form {x ∈ Rn : g(x) ≥ 0 for g ∈ S}, where S ⊆ R[x] =
R[x1, . . . , xn]. Lasserre [Las01] and Parrilo [Par00] have proposed hierarchies of semidefinite pro-
gramming relaxations based on the theory of moments and the dual theory of sums of squares
polynomials, which can be used to compute successively better lower bounds converging to the
global minimum (under an Archimedean condition). This approach has been used in a wide
range of applications and there is extensive literature (see, e.g., [AL12, Las09, Lau09]). Most
relevant to this work, it is used in [Las14] to design conic approximations of the completely
positive cone and in [Nie14] to check membership in the completely positive cone.

This approach has also been extended to eigenvalue optimization [PNA10, NPA12], and
later to tracial optimization [BCKP13, KP16]. Here we briefly explain the tracial optimization
problem, which is most relevant to our work, for which we first need some notation. We
denote the set of all words in the symbols x1, . . . , xn by 〈x〉 = 〈x1, . . . , xn〉, where the empty
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word is denoted by 1. This is a semigroup with involution, where the binary operation is
concatenation, and the involution of a word w is the word w∗ obtained by reversing the order
of the symbols in w. The ∗-algebra of all real linear combinations of these words is denoted by
R〈x〉, and its elements are called noncommutative polynomials. The involution extends to R〈x〉
by linearity. A polynomial p ∈ R〈x〉 is called symmetric if p∗ = p and SymR〈x〉 denotes the set
of symmetric polynomials. We can evaluate a noncommutative polynomial at a matrix tuple
X = (X1, . . . , Xn) ∈ (Hd)n. In tracial optimization the problem is to minimize the normalized
trace tr(f(X)) over the matrix positivity domain

D(S) =
⋃
d≥1

{
X = (X1, . . . , Xn) ∈ (Hd)n : g(X) � 0 for g ∈ S

}
,

where S ⊆ SymR〈x〉. Throughout tr(·) denotes the normalized trace, while Tr(·) denotes the
(non-normalized) trace, so that tr(I) = 1 and Tr(I) = d for the identity matrix I ∈ Hd. As in
the classical (commutative) case, semidefinite programming hierarchies have been constructed
to obtain lower bounds on the minimal normalized trace. Here the distinguishing feature is
the dimension independence: the optimization is over all possible matrix sizes. Perhaps coun-
terintuitively, in this paper we use these techniques to compute lower bounds on factorization
dimensions.

To explain the basic idea of how we obtain lower bounds we consider the cpsd-rank case.
Given a minimal factorization A = (Tr(Xi, Xj)), with X = (X1, . . . , Xn) ∈ (Hd+)n and d =
cpsd-rankC(A), consider the linear form LX ∈ R〈x〉∗ defined by

LX(p) = Re(Tr(p(X1, . . . , Xn))) for p ∈ R〈x〉.

ThenA = (LX(xixj)) and cpsd-rankC(A) = d = L(1). To obtain lower bounds on cpsd-rankC(A)
we minimize L(1) over a set of linear functionals L that satisfy certain computationally tractable
properties of LX. Note that this idea of minimizing L(1) has been used recently [TS15, Nie16]
in the commutative setting to derive a converging hierarchy to the nuclear norm of a symmetric
tensor. In order to explain how we can give a semidefinite programming hierarchy using this
idea we first need some more notation.

Given t ∈ N∪ {∞}, we let 〈x〉t be the set of words w of degree |w| ≤ t, so that 〈x〉∞ = 〈x〉,
and R〈x〉t is the real vector space of noncommutative polynomials p of degree deg(p) ≤ t.
Given t ∈ N, we let 〈x〉=t be the set of words of degree exactly equal to t. Let R〈x〉∗t be the
space of real-valued linear functionals on R〈x〉t. A linear functional L ∈ R〈x〉∗t is symmetric
if L(w) = L(w∗) for all w ∈ 〈x〉t and tracial if L(ww′) = L(w′w) for all w,w′ ∈ 〈x〉t. A
linear functional L ∈ R〈x〉∗2t is said to be positive if L(p∗p) ≥ 0 for all p ∈ R〈x〉t. Given a
set S ⊆ SymR〈x〉 and t ∈ N ∪ {∞}, the truncated quadratic module at degree 2t, denoted by
M2t(S), is the cone generated by all polynomials p∗gp ∈ R〈x〉2t with g ∈ S ∪ {1}:

M2t(S) = cone
{
p∗gp : p ∈ R〈x〉, g ∈ S ∪ {1}, deg(p∗gp) ≤ 2t

}
. (1)

The linear functional LX as defined above is symmetric and tracial. Moreover it satisfies
some positivity conditions, since we have LX(q) ≥ 0 whenever q(X) is positive semidefinite. It
follows that LX(p∗p) ≥ 0 and, as will be explained later, LX satisfies the following localizing
conditions LX(p∗(

√
Aiixi − x2

i )p) ≥ 0 for all p and i. Truncating the linear form yields the
following hierarchy of lower bounds:

ξcpsd
t (A) = min

{
L(1) : L ∈ R〈x1, . . . , xn〉∗2t tracial and symmetric,

L(xixj) = Aij for i, j ∈ [n],

L ≥ 0 on M2t

(
{
√
A11x1 − x2

1, . . . ,
√
Annxn − x2

n}
)}
.
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The bound ξcpsd
t (A) is computationally tractable (for small t). Indeed the localizing constraint

(L ≥ 0 onM2t(S)) can be enforced by requiring certain matrices, whose entries are determined
by L, to be positive semidefinite. This makes the problem defining ξcpsd

t (A) into a semidefi-
nite program. These localizing conditions ensure the Archimedean property for the quadratic
module, which permits to show some convergence properties of the bounds ξcpsd

t (A).
The above idea extends naturally for the other matrix factorization ranks, using the following

two basic ideas. First, since the cp-rank and the nonnegative rank deal with factorizations
by diagonal matrices, we use linear functionals acting on classical commutative polynomials.
Second, the asymmetric factorization ranks (psd-rank and nonnegative rank) can be seen as
analogs of the symmetric ranks in the partial matrix setting, where we know only the values
of L on the quadratic monomials corresponding to entries in the off-diagonal blocks (this will
require scaling of the factors in order to be able to define localizing constraints ensuring the
Archimedean property). A main advantage of our approach is that it applies to all four matrix
factorization ranks, after easy suitable adaptations.

1.4 Organization

We start by providing the necessary background about commutative and tracial polynomial op-
timization in Section 2, with proofs relegated to the appendix. We then introduce in Section 3
the basic hierarchy of lower bounds on the cpsd-rank, including a discussion of its properties
and of some ways to improve the ‘basic’ bounds. In Sections 4 and 5 we present the adapted hi-
erarchies for the completely positive rank and the nonnegative rank, respectively. As mentioned
above, we compare our results to known bounds in [FP16], and we also provide computational
examples illustrating the behaviour of the various bounds. In Section 6 we discuss our hierarchy
for the positive semidefinite rank, and we also provide some computational examples.

2 Commutative and tracial polynomial optimization

In this section we discuss known convergence and flatness results for commutative and tracial
optimization. We present these results in such a way that we can later use them for our
hierarchies to lower bound matrix factorization ranks. Although the commutative case was
developed first, here we treat the commutative and tracial cases together. We will provide proofs
(in the appendices) working only on the “moment side”, that is, relying on properties of linear
functionals rather than using real algebraic results on sums of squares. Tracial optimization is
an adaptation of eigenvalue optimization as developed in [PNA10], but here we only discuss the
commutative and tracial cases, as these are the most relevant to our approach.

2.1 Flat extensions and representations of linear forms

We start by defining what it means for a linear functional L ∈ R〈x〉∗2t to be flat. For this we
can use the null space of L, which is the vector space

Nt(L) =
{
p ∈ R〈x〉t : L(qp) = 0 for q ∈ R〈x〉t

}
.

We also use the notation N(L) = N∞(L). Given an integer 1 ≤ δ ≤ t, the functional L is said
to be δ-flat if

R〈x〉t = R〈x〉t−δ +Nt(L).

Moreover, we say that L is flat if L is δ-flat for some δ ≥ 1.
Many properties satisfied by a linear functional L ∈ R〈x〉∗2t can be conveniently expressed

in terms of its moment matrix (aka Hankel matrix) Mt(L), which is the matrix whose rows and
columns are indexed by the words in 〈x〉t, with entries

Mt(L)w,w′ = L(w∗w′) for w,w′ ∈ 〈x〉t.
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Indeed, the linear form L is symmetric if and only if Mt(L) is symmetric, and L is symmetric
and positive if and only if Mt(L) is positive semidefinite. Moreover, the null space of L can be
identified with the kernel of Mt(L): A polynomial p =

∑
w cww belongs to Nt(L) if and only

if its coefficient vector (cw) belongs to the kernel of Mt(L). Finally, the form L is δ-flat if and
only if the rank of Mt(L) is equal to the rank of its principal submatrix indexed by the words
in 〈x〉t−δ; that is, if

rankMt(L) = rankMt−δ(L).

One can express nonnegativity of a tracial linear form L ∈ R〈x〉∗2t on a truncated quadratic
module M2t(S) as defined in (1) in terms of certain associated positive semidefinite moment
matrices: Given a polynomial g ∈ R〈x〉, define gL ∈ R〈x〉∗2t−deg(g) by (gL)(p) = L(gp), so that

L(p∗gp) ≥ 0 for all p ∈ R〈x〉t−dg ⇐⇒ Mt−dg(gL) � 0, (dg = ddeg(g)/2e),

and thus L ≥ 0 on M2t(S) if and only if Mt−dg(gL) � 0 for all g ∈ S ∪ {1}.
Important examples of positive symmetric tracial linear forms on R〈x〉 arise from trace

evaluation maps. Given a tuple X = (X1, . . . , Xn) ∈ (Hd)n of Hermitian d × d matrices, we
define the trace evaluation map LX on R〈x〉 by setting

LX(p) = Tr(p(X1, . . . , Xn)) for all p ∈ R〈x〉.

Recall Tr(·) is the matrix trace that satisfies Tr(I) = d for I ∈ Hd. If we instead use the
normalized trace tr(·), then LX is called a normalized trace evaluation map and LX(1) = tr(I) =
Tr(I)/d = 1 holds. A (normalized) trace evaluation map is symmetric, tracial, and positive,
which follows from

Tr(X∗) = Tr(X), Tr(XY ) = Tr(Y X), Tr(X∗X) ≥ 0 for all X,Y ∈ Hd.

When X consists of complex Hermitian matrices, the trace evaluation LX takes complex values
and we may consider its real part Re(LX), which is also symmetric and tracial, and positive
whenever LX is positive.

The matrix positivity domain of a subset S ⊆ SymR〈x〉 of symmetric polynomials is defined
as

D(S) =
⋃
d≥1

{
X = (X1, . . . , Xn) ∈ (Hd)n : g(X) � 0 for all g ∈ S

}
. (2)

Hence the trace evaluation map LX for X ∈ D(S) is nonnegative on the quadratic module

M(S) = cone
{
p∗gp : p ∈ R〈x〉, g ∈ S ∪ {1}

}
.

We will now discuss several key results about extending and representing linear forms that
are nonnegative on a (truncated) quadratic module. These results are already (mostly) known,
but as they will be used extensively in our paper, we provide all proofs in the appendix for
the reader’s convenience. For the proofs we will work only on the “moment side”, which is the
natural setting for the applications treated in this paper, thus without using algebraic results
about sums of squares of polynomials. In addition we will formulate our results making the
link to C∗-algebras explicit whenever relevant, since this will be useful for later results in this
paper and also in the work [GdLL17b]. As infinite dimensional analogs of matrix algebras,
C∗-algebras arise naturally when considering tracial polynomial optimization problems.

We start with some background on C∗-algebras; see, e.g., [Bla06] for details. For our pur-
poses we define a C∗-algebra to be a norm closed ∗-subalgebra over C of the space B(H) of
bounded operators on a complex Hilbert space H. Such an algebra A is unital if it contains
the identity operator (denoted 1). By a fundamental result of Artin-Wedderburn, a finite di-
mensional C∗-algebra is ∗-isomorphic to a direct sum

⊕M
m=1 Cdm×dm of full complex matrix

7



algebras [BEK78, Wed64]. In particular, any finite dimensional C∗-algebra is unital. The posi-
tive elements in a C∗-algebra A are those of the form a∗a for a ∈ A, and A is equipped with a
norm ‖ · ‖ (induced from the operator norm of B(H)) such that ‖a∗a‖ = ‖a‖2. A state τ on a
unital C∗-algebra A is a linear form that is positive, i.e., τ(a∗a) ≥ 0 for all a ∈ A, and satisfies
τ(1) = 1. Since A is a complex algebra, every state τ is Hermitian: τ(a) = τ(a∗) for all a ∈ A.
The state τ is tracial if τ(ab) = τ(ba) for all a, b ∈ A and faithful if τ(a∗a) = 0 implies a = 0.
A useful fact is that the normalized matrix trace is the unique tracial state on the full matrix
algebra Cd×d, see, e.g., [BK12]. Theorems 2.1 and 2.2 use a Gelfand–Naimark–Segal (GNS)
construction to represent a positive linear functional as a tracial state on a unital C∗-algebra.
Given a unital C∗-algebra A, we need the following adaptation of the matrix positivity domain:

DA(S) =
{
X ∈ An : X∗i = Xi for all i ∈ [n], g(X) � 0 for all g ∈ S

}
,

where g(X) � 0 means that g(X) is positive in A.
Analogously to the truncated quadratic module and matrix positivity domain, we will also

use truncated ideals and matrix varieties. For T ⊆ R〈x〉 we define

I2t(T ) =
{
ph : p ∈ R〈x〉, h ∈ T, deg(ph) ≤ 2t

}
,

V(T ) =
⋃
d≥1

{
X ∈ (Hd)n : h(X) = 0 for all h ∈ T

}
,

VA(T ) =
{
X ∈ An : X∗i = Xi for all i ∈ [n], h(X) = 0 for all h ∈ T

}
.

When all polynomials h ∈ T are symmetric one can capture the constraint L = 0 on I2t(T )
by requiring L ≥ 0 on M2t(±T ). An important advantage of treating the ideal separately,
however, is that we can also use nonsymmetric generators in T .

In the following theorem we assume M(S) + I(T ) is Archimedean, by which we mean that
there exists a scalar R > 0 such that R −

∑n
i=1 x

2
i ∈ M(S) + I(T ). The following theorem is

implicit in several works (see, e.g., [NPA12, BKP16]).

Theorem 2.1. Let S ⊆ SymR〈x〉 and T ⊆ R〈x〉 with M(S) + I(T ) Archimedean. Given a
linear form L ∈ R〈x〉∗, the following are equivalent:

(1) L is symmetric, tracial, nonnegative on M(S), zero on I(T ), and L(1) = 1;

(2) there is a unital C∗-algebra A with tracial state τ and X ∈ DA(S) ∩ VA(T ) with

L(p) = τ(p(X)) for all p ∈ R〈x〉. (3)

The next result can be seen as a finite dimensional analogue of the above result, where we do
not needM(S) to be Archimedean, but instead assume the rank of M(L) is finite. In addition
to the Gelfand–Naimark–Segal construction, the proof uses Artin–Wedderburn theory. For the
unconstrained case the proof of this can be found in [BK12] and in [BKP16, KP16] this result
is extended to the constrained case.

Theorem 2.2. For S ⊆ SymR〈x〉, T ⊆ R〈x〉, and L ∈ R〈x〉∗, the following are equivalent:

(1) L is a symmetric, tracial, linear form with L(1) = 1 that is nonnegative on M(S), zero
on I(T ), and has rank(M(L)) <∞;

(2) there is a finite dimensional C∗-algebra A, a tracial state τ , and X ∈ DA(S) ∩ VA(T )
satisfying equation (3);

(3) L is a convex combination of normalized trace evaluations at points in D(S) ∩ V(T ).
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The following result claims that any flat linear functional on a truncated polynomial space
can be extended to a linear functional on the full space of polynomials (with the same positivity
properties). It is due to Curto and Fialkow [CF96] in the commutative case and extensions to
the noncommutative case can be found in [PNA10] (for eigenvalue optimization) and [BK12]
(for trace optimization).

Theorem 2.3. Let 1 ≤ δ ≤ t < ∞, S ⊆ SymR〈x〉2δ, and T ⊆ R〈x〉2δ. Suppose L ∈ R〈x〉∗2t
is symmetric, tracial, δ-flat, nonnegative on M2t(S), and zero on I2t(T ). Then L extends to a
symmetric, tracial, linear form on R〈x〉 that is nonnegative on M(S), zero on I(T ), and whose
moment matrix has finite rank.

Combining Theorems 2.2 and 2.3 gives the following result, which shows that a flat linear
form can be extended to a conic combination of trace evaluation maps. It was first proven
in [KP16, Proposition 6.1] (and in [BK12] for the unconstrained case).

Corollary 2.4. Let 1 ≤ δ ≤ t < ∞, S ⊆ SymR〈x〉2δ, and T ∈ R〈x〉2δ. If L ∈ R〈x〉∗2t is
symmetric, tracial, δ-flat, nonnegative on M2t(S), and zero on I2t(T ), then it extends to a
conic combination of trace evaluations at elements of D(S) ∩ V(T ).

2.2 Specialization to the commutative setting

The definitions and results from the previous section can be adapted to the commutative setting.
The moment matrix Mt(L) of a linear form L ∈ R[x]∗2t is now indexed by the monomials

in [x]t, where we set Mt(L)w,w′ = L(ww′) for w,w′ ∈ [x]t. Due to the commutativity of the
variables, this matrix is smaller and more entries are now required to be equal. For instance, the
(x2x1, x3x4)-entry of M2(L) is equal to its (x3x1, x2x4)-entry, which does not hold in general in
the non-commutative case.

Given a ∈ Rn, the evaluation map at a is the linear map La ∈ R[x]∗ defined by

La(p) = p(a1, . . . , an) for all p ∈ R[x].

We can view La as a trace evaluation at scalar matrices. Moreover, we can view a trace
evaluation map at a tuple of pairwise commuting matrices as a conic combination of evaluation
maps by simultaneously diagonalizing the matrices.

The quadratic module M(S) and the ideal I(T ) have immediate specializations to the
commutative setting. We only need the following two new definitions: the (scalar) positivity
domain and scalar variety of sets S, T ⊆ R[x] are given by

D(S) =
{
a ∈ Rn : g(a) ≥ 0 for g ∈ S

}
and V (T ) =

{
a ∈ Rn : h(a) = 0 for h ∈ T

}
. (4)

We first give the commutative analogue of Theorem 2.1, where we give an additional integral
representation in point (3). The equivalence of points (1) and (3) is proved in [Put93] based
on Putinar’s Positivstellensatz. In the appendix we give a direct proof on the “moment side”
using the Gelfand representation.

Theorem 2.5. Let S, T ⊆ R[x] with M(S) + I(T ) Archimedean. For L ∈ R[x]∗, the following
are equivalent:

(1) L is nonnegative on M(S), zero on I(T ), and L(1) = 1;

(2) there exists a unital commutative C∗-algebra A with a state τ and X ∈ DA(S) ∩ VA(T )
such that L(p) = τ(p(X)) for all p ∈ R[x];

(3) there is a probability measure µ on D(S) ∩ V (T ) such that

L(p) =

∫
D(S)∩V (T )

p(x) dµ(x) for all p ∈ R[x].
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The following is the commutative analogue of Theorem 2.2.

Theorem 2.6. For S ⊆ R[x], T ⊆ R[x], and L ∈ R[x]∗, the following are equivalent:

(1) L is nonnegative on M(S), zero on I(T ), has rank(M(L)) <∞, and L(1) = 1;

(2) there is a finite dimensional commutative C∗-algebra A, a state τ , and X ∈ DA(S)∩VA(T )
satisfying equation (3);

(3) L is a convex combination of evaluations at points in D(S) ∩ V (T ).

The next result, due to Curto and Fialkow [CF96], is the commutative analogue of Corol-
lary 2.4.

Theorem 2.7. Let 1 ≤ δ ≤ t < ∞ and S, T ⊆ R[x]2δ. If L ∈ R[x]∗2t is δ-flat, nonnegative
on M2t(S), and zero on I2t(T ), then L extends to a conic combination of evaluation maps at
points in D(S) ∩ V (T ).

We will also use the following result, which permits to express any linear functional L
nonnegative on an Archimedean quadratic module as a conic combination of evaluations at
points, when restricting L to polynomials of bounded degree.

Theorem 2.8. Let S, T ⊆ R[x] such that M(S) + I(T ) is Archimedean. If L ∈ R[x]∗ is
nonnegative on M(S) and zero on I(T ), then for any integer k ∈ N the restriction of L to
R[x]k extends to a conic combination of evaluations at points in D(S) ∩ V (T ).

2.3 Commutative and tracial polynomial optimization

We briefly recall here the basic polynomial optimization problem in both the commutative and
tracial settings. We recall how to design hierarchies of semidefinite programming based bounds
and we give their main convergence properties. In the rest of the paper we will see how these
results can be adapted to give hierarchies of bounds for matrix factorization ranks. The classical
commutative polynomial optimization problem asks to minimize a polynomial f ∈ R[x] over a
feasible region of the form D(S) as defined in (4):

f∗ = infa∈D(S)f(a) = inf
{
f(a) : a ∈ Rn, g(a) ≥ 0 for g ∈ S

}
.

In tracial polynomial optimization, given f ∈ SymR〈x〉, this is modified to minimizing tr(f(X))
over a feasible region of the form D(S) as in (2):

f tr
∗ = infX∈D(S)tr(f(X)) = inf

{
tr(f(X)) : d ∈ N, X ∈ (Hd)n, g(X) � 0 for g ∈ S

}
,

where the infimum does not change if we replace Hd by Sd. Commutative optimization is
recovered by restricting to 1× 1 matrices.

For the commutative case, Lasserre [Las01] and Parrilo [Par00] have proposed hierarchies
of semidefinite programming relaxations based on sums of squares of polynomials and the dual
theory of moments. This approach has been extended to eigenvalue optimization [PNA10,
NPA12] and later to tracial optimization [BCKP13, KP16]. The starting point in deriving these
relaxations is to reformulate the above problems as minimizing L(f) over all normalized trace
evaluation maps L at points in D(S) or D(S), and then to express computationally tractable
properties satisfied by such maps L.

For S ∪ {f} ⊆ R[x] and ddeg(f)/2e ≤ t ≤ ∞, define the (truncated) quadratic module
M2t(S) by

M2t(S) = cone
{
gp2 : p ∈ R[x], g ∈ S ∪ {1}, deg(gp2) ≤ 2t

}
.

10



We can use this to formulate the following semidefinite programming lower bound on f∗:

ft = inf
{
L(f) : L ∈ R[x]∗2t, L(1) = 1, L ≥ 0 on M2t(S)

}
.

For t ∈ N we have ft ≤ f∞ ≤ f∗.
In the same way, for S ∪ {f} ⊆ SymR〈x〉 and t such that ddeg(f)/2e ≤ t ≤ ∞, we have the

following semidefinite programming lower bound on f tr
∗ :

f tr
t = inf

{
L(f) : L ∈ R〈x〉∗2t tracial and symmetric, L(1) = 1, L ≥ 0 on M2t(S)

}
,

where we now use definition (1) for M2t(S).
The next theorem from [Las01] gives fundamental convergence properties for the commuta-

tive case; see, e.g., [Las09, Lau09] for a detailed exposition.

Theorem 2.9. Let 1 ≤ δ ≤ t <∞ and S ∪ {f} ⊆ R[x]2δ with D(S) 6= ∅.

(i) If M(S) is Archimedean, then ft → f∞ as t → ∞, and the optimal values in f∞ and f∗
are attained and f∞ = f∗.

(ii) If ft admits an optimal solution L that is δ-flat, then L is a convex combination of eval-
uation maps at global minimizers of f in D(S), and ft = f∞ = f∗.

To discuss convergence for the tracial case we need one more optimization problem:

f tr
II1 = inf

{
τ(f(X)) : X ∈ DA(S), A is a unital C∗-algebra with tracial state τ

}
.

This problem can be seen as an infinite dimensional analogue of f tr
∗ : if we restrict to finite di-

mensional C∗-algebras in the definition of f tr
II1

, then we recover f tr
∗ (cf. Theorem 2.2). Moreover,

under a certain ‘flatness’ condition, equality f tr
∗ = f tr

II1
holds (cf. Theorem 2.11). Whether f tr

II1
=

f tr
∗ is true in general is related to Connes’ embedding conjecture (see [KS08, KP16, BKP16]).

Above we defined the parameter f tr
II1

using C∗-algebras. However, the following lemma shows
that we get the same optimal value if we restrict to A being a von Neumann algebra of type II1

with separable predual, which is the more common way of defining the parameter f tr
II1

as is done
in [KP16] (and justifies the notation). We omit the proof of this lemma which relies on a GNS
construction and algebraic manipulations, standard for algebraists.

Lemma 2.10. Let A be a C∗-algebra with tracial state τ and a1, . . . , an ∈ A. There exists a
von Neumann algebra F of type II1 with separable predual, a faithful normal tracial state φ, and
elements b1, . . . , bn ∈ F , so that for every p ∈ R〈x〉 we have

τ(p(a1, . . . , an)) = φ(p(b1, . . . , bn)) and

p(a1, . . . , an) is positive ⇐⇒ p(b1, . . . , bn) is positive.

For all t ∈ N we have
f tr
t ≤ f tr

∞ ≤ f tr
II1 ≤ f

tr
∗ ,

where the last inequality follows by considering for A the full matrix algebra Cd×d (d ∈ N). The
next theorem from [KP16] summarizes convergence properties for tracial optimization.

Theorem 2.11. Let 1 ≤ δ ≤ t <∞ and S ∪ {f} ⊆ SymR〈x〉2δ with D(S) 6= ∅.

(i) If M(S) is Archimedean, then f trt → f tr
∞ as t → ∞, and the optimal values in f tr∞ and

f tr
II1

are attained and equal.

(ii) If f trt has an optimal solution L that is δ-flat, then L is a convex combination of normalized
trace evaluations at matrix tuples in D(S), and f trt = f tr∞ = f tr

II1
= f tr
∗ .
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We conclude with the following technical lemma, based on the Banach-Alaoglu theorem. It
is a well known crucial tool for proving the asymptotic convergence result from Theorem 2.11(i)
and it will be used again later in the paper.

Lemma 2.12. Let S ⊆ SymR〈x〉 and R > 0 such that R − (x2
1 + · · · + x2

n) ∈ M2(S). If
Lt ∈ R〈x〉∗2t is nonnegative on M2t(S), then |Lt(w)| ≤ R|w|/2Lt(1) for all w ∈ 〈x〉2t. If in
addition suptLt(1) <∞, then (Lt) has a pointwise converging subsequence in R〈x〉∗.

3 Lower bounds on the completely positive semidefinite rank

Let A be a completely positive semidefinite n × n matrix. For t ∈ N ∪ {∞} we consider the
following semidefinite program to lower bound its complex completely positive semidefinite rank:

ξcpsd
t (A) = min

{
L(1) : L ∈ R〈x1, . . . , xn〉∗2t tracial and symmetric,

L(xixj) = Aij for i, j ∈ [n],

L ≥ 0 on M2t(S
cpsd
A )

}
,

where we set
S cpsd
A =

{√
A11x1 − x2

1, . . . ,
√
Annxn − x2

n

}
. (5)

Additionally, define ξcpsd
∗ (A) by adding the constraint rank(M(L)) <∞ to the program defining

ξcpsd
∞ (A). This gives a hierarchy of monotone nondecreasing lower bounds on the completely

positive semidefinite rank:

ξcpsd
1 (A) ≤ . . . ≤ ξcpsd

t (A) ≤ . . . ≤ ξcpsd
∞ (A) ≤ ξcpsd

∗ (A) ≤ cpsd-rankC(A).

The inequality ξcpsd
∞ (A) ≤ ξcpsd

∗ (A) and monotonicity are clear: If L is feasible for ξcpsd
k (A) with

t ≤ k ≤ ∞, then its restriction to R〈x〉2t is feasible for ξcpsd
t (A).

The following notion of localizing polynomials will be useful. A set S ⊆ R〈x〉 is said to
be localizing at a matrix tuple X if X ∈ D(S), and we say that S is localizing for A if S is
localizing at some factorization X ∈ (Hd+)n of A with d = cpsd-rankC(A). The set S cpsd

A as
defined in (5) is localizing for A. In fact, it is localizing at any factorization X of A by Hermitian
positive semidefinite matrices. Indeed, since Aii = Tr(X2

i ) ≥ λmax(X2
i ) = λmax(Xi)

2 we have√
AiiXi −X2

i � 0 for all i ∈ [n].

We can use this to show ξcpsd
∗ (A) ≤ cpsd-rankC(A): Set d = cpsd-rankC(A), let X ∈ (Hd+)n

be a Gram factorization of A and define the linear form LX ∈ R〈x〉∗ by

LX(p) = Re(Tr(p(X))) for all p ∈ R〈x〉.

By construction LX is symmetric and tracial, and A = (L(xixj)). Moreover, since the set of

polynomials S cpsd
A is localizing for A, the form LX is nonnegative onM(S cpsd

A ). Finally, we have
rank(M(LX)) <∞, since the algebra generated by X1, . . . , Xn is finite dimensional. Hence, LX

is feasible for ξcpsd
∗ (A) with LX(1) = d, which shows ξcpsd

∗ (A) ≤ cpsd-rankC(A).

As the following inclusions show, the quadratic moduleM(S cpsd
A ) is Archimedean. Moreover,

although there are other possible choices for the localizing polynomials to use in S cpsd
A , the choice

made in (5) leads to the largest truncated quadratic module and thus to the best bound. For
c > 0, we have the inclusions

M2t(x, c− x) ⊆M2t(x, c
2 − x2) ⊆M2t(cx− x2) ⊆M2t+2(x, c− x),
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which hold in light of the following identities:

c− x =
(
(c− x)2 + c2 − x2

)
/(2c), (6)

c2 − x2 = (c− x)2 + 2(cx− x2), (7)

cx− x2 =
(
(c− x)x(c− x) + x(c− x)x

)
/c, (8)

x =
(
(cx− x2) + x2

)
/c. (9)

In the rest of this section we investigate properties of the above hierarchy as well as variations
on it. We discuss convergence properties, asymptotically and under flatness, and we give another
formulation for the parameter ξcpsd

∗ (A). Moreover, as the inequality ξcpsd
∗ (A) ≤ cpsd-rankC(A)

is typically strict, we present an approach to strengthen the bounds in order to go beyond
ξcpsd
∗ (A). We also propose some techniques to simplify the computation of the bounds, and we

illustrate the behaviour of the bounds on some examples.

3.1 The parameters ξcpsd
∞ (A) and ξcpsd

∗ (A)

In this section we consider convergence properties of the hierarchy ξcpsd
t (·), both asymptotically

and under flatness.

Proposition 3.1. Let A ∈ CSn+. For t ∈ N ∪ {∞} the optimum in ξcpsd
t (A) is attained, and

lim
t→∞

ξcpsd
t (A) = ξcpsd

∞ (A).

Moreover, ξcpsd
∞ (A) is equal to the smallest α ≥ 0 for which there exists a unital C∗-algebra A

with tracial state τ and X ∈ DA(S cpsd
A ) such that A = α · (τ(XiXj)).

Proof. The sequence (ξcpsd
t (A))t is monotonically nondecreasing and upper bounded by ξcpsd

∞ (A),
which means limt→∞ ξ

cpsd
t (A) exists and is at most ξcpsd

∞ (A).
As ξcpsd

t (A) ≤ ξcpsd
∞ (A) we may add the constraint L(1) ≤ ξcpsd

∞ (A) to the problem ξcpsd
t (A)

for every t ∈ N. By (7) we have Tr(A)−
∑

i x
2
i ∈M2(S cpsd

A ). Hence, by Lemma 2.12, the feasible
region of ξcpsd

t (A) is compact, and thus it has an optimal solution Lt. Again by Lemma 2.12,
the sequence (Lt) has a pointwise converging subsequence with limit L ∈ R〈x〉∗. This pointwise
limit L is symmetric, tracial, satisfies (L(xixj)) = A, and is nonnegative onM(S cpsd

A ). Hence L
is feasible for ξcpsd

∞ (A). This implies that L is optimal for ξcpsd
∞ (A) and that limt→∞ ξ

cpsd
t (A) =

ξcpsd
∞ (A).

The reformulation of ξcpsd
∞ (A) using C∗-algebras follows directly from Theorem 2.1.

The following proposition is a direct application of Corollary 2.4. In general we do not know
whether the infimum in ξcpsd

∗ (A) is attained, but as the following result shows this infimum is
attained if there is a t ∈ N for which ξcpsd

t (A) admits a flat optimal solution.

Proposition 3.2. Let A ∈ CSn+. The parameter ξcpsd
∗ (A) is equal to the infimum of L(1) over

all conic combinations L of trace evaluations at elements of DA(S cpsd
A ) such that A = (L(xixj)).

Equivalently, ξcpsd
∗ (A) is the infimum over all α ≥ 0 for which there exist a finite dimensional

C∗-algebra A with tracial state τ and

(X1, . . . , Xn) ∈ DA(S cpsd
A ) such that A = α · (τ(XiXj)).

Moreover, if ξcpsd
t (A) admits a flat optimal solution, then ξcpsd

t (A) = ξcpsd
∗ (A).

We have the following more explicit formulation for ξcpsd
∗ (A), which also explains why the

inequality ξcpsd
∗ (A) ≤ cpsd-rankC(A) is typically strict. Here ‖ · ‖ denotes the operator norm,

so that ‖X‖ = λmax(X) for X � 0.
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Proposition 3.3. For A ∈ CSn+ we have

ξcpsd
∗ (A) = inf

{ M∑
m=1

dm ·max
i∈[n]

‖Xm
i ‖2

Aii
: M ∈ N, d1, . . . , dM ∈ N, (10)

Xm
i ∈ H

dm
+ for i ∈ [n],m ∈ [M ],

A = Gram
(
⊕Mm=1 X

m
1 , . . . ,⊕Mm=1X

m
n

)}
.

Note that using matrices from Sdm+ instead of Hdm+ does not change the optimal value.

Proof. The proof uses the formulation of ξcpsd
∗ (A) in terms of conic combinations of trace eval-

uations at matrix tuples in D(S cpsd
A ) as given in Proposition 3.2. We first show the inequality

β ≤ ξcpsd
∗ (A), where β is the optimal value of the program in (10).

For this, assume L ∈ R〈x〉∗ is a conic combination of trace evaluations at elements of

D(S cpsd
A ) such that A = (L(xixj)). We will construct a feasible solution for (10) with objective

value L(1). The linear functional L can be written as

L =
M∑
m=1

λmLYm , where λm > 0 and Ym ∈ D(S cpsd
A ) for all m ∈ [M ].

Let dm denote the size of the matrices Y m
1 , . . . , Y m

n , so that L(1) =
∑

mλmdm. Since Ym ∈
D(S cpsd

A ), we have Y m
i � 0 and AiiI−(Y m

i )2 � 0 by identities (7) and (9). This implies ‖Y m
i ‖2 ≤

Aii for all i ∈ [n] and m ∈ [M ]. Let Xm =
√
λmYm. Then, L(xixj) =

∑
m Tr(Xm

i X
m
j ), so

that the matrices ⊕mXm
1 , . . . ,⊕mXm

n form a Gram decomposition of A. This gives a feasible
solution to (10) with value

M∑
m=1

dm ·max
i∈[n]

‖Xm
i ‖2

Aii
=

M∑
m=1

dmλm max
i∈[n]

‖Y m
i ‖2

Aii
≤

M∑
m=1

dmλm = L(1),

This shows β ≤ L(1), and hence β ≤ ξcpsd
∗ (A).

For the other direction we assume

A = Gram
(
⊕Mm=1 X

m
1 , . . . ,⊕Mm=1X

m
n

)
, Xm

1 , . . . , X
m
n ∈ Sdm+ (m ∈ [M ]).

Set λm = maxi∈[n]‖Xm
i ‖2/Aii, and define the linear form L by

L =
M∑
m=1

λmLYm , where Ym = Xm/
√
λm for all m ∈ [M ].

We have L(1) =
∑

m λmdm and A = (L(xixj)), and thus it suffices to show that each matrix

tuple Ym belongs to D(S cpsd
A ). For this we observe that λmAii ≥ ‖Xm

i ‖2. Therefore λmAiiI �
(Xm

i )2, so AiiI � (Y m
i )2, which implies

√
AiiY

m
i − (Y m

i )2 � 0. This shows ξcpsd
∗ (A) ≤ L(1) =∑

m λmdm, and thus ξcpsd
∗ (A) ≤ β.

We can say a bit more when A lies on an extreme ray of the cone CSn+: In the formulation
from Proposition 3.3 it suffices to restrict the minimization over all factorizations of A involving
only one block. We know very little about the extreme rays of CSn+, also in view of the recent
result [Slo17] that the cone CSn+ is not closed for large n.

Proposition 3.4. If A lies on an extreme ray of the cone CSn+, then

ξcpsd
∗ (A) = inf

{
d ·max

i∈[n]

‖Xi‖2

Aii
: d ∈ N, X1, . . . , Xn ∈ Hd+, A = Gram

(
X1, . . . , Xn

)}
.

Moreover, if ⊕Mm=1X
m
1 , . . . ,⊕Mm=1X

m
n is a Gram decomposition of A providing an optimal solu-

tion to (10) and some block Xm
i has rank 1, then ξcpsd

∗ (A) = cpsd-rankC(A).
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Proof. Let β denote the infimum in Proposition 3.4. The inequality ξcpsd
∗ (A) ≤ β follows from

the reformulation of ξcpsd
∗ (A) in Proposition 3.3. To show the reverse inequality we consider a

solution
⊕Mm=1X

m
1 , . . . ,⊕Mm=1X

m
n

to (10), and set λm = maxi‖Xm
i ‖2/Aii. We will show β ≤

∑
m dmλm. For this define the

matrices Am = Gram(Xm
1 , · · · , Xm

n ), so that A =
∑

mAm. As A lies on an extreme ray of CSn+,
we must have Am = αmA for some αm > 0 with

∑
m αm = 1. Hence, since

A = Am/αm = Gram(Xm
1 /
√
αm, · · · , Xm

n /
√
αm),

we have β ≤ dmλm/αm for all m ∈ [M ]. It suffices now to use
∑

m αm = 1 to see that
minmdmλm/αm ≤

∑
m dmλm. So we have shown β ≤ minmdmλm/αm ≤

∑
m dmλm. This

implies β ≤ ξcpsd
∗ (A), and thus equality holds.

Assume now that ⊕Mm=1X
m
1 , . . . ,⊕Mm=1X

m
n is optimal to (10) and that there is a block Xm

i

of rank 1. By Proposition 3.3 we have
∑

m dmλm = ξcpsd
∗ (A). From the argument just made

above it follows that
ξcpsd
∗ (A) = minmdmλm/αm =

∑
m

dmλm.

As
∑

m αm = 1 this implies equality dmλm/αm = minmdmλm/αm for all m, that is, all terms

dmλm/αm take the same value, equal to ξcpsd
∗ (A). By assumption there exist some m ∈ [M ]

and i ∈ [n] for which Xm
i has rank 1. Then ‖Xm

i ‖2 = 〈Xm
i , X

m
i 〉, which gives λm = αm, and

thus ξcpsd
∗ (A) = dm. On the other hand, cpsd-rankC(A) ≤ dm since (Xm

i /
√
αm)i forms a Gram

decomposition of A, and thus equality ξcpsd
∗ (A) = dm = cpsd-rankC(A) holds.

3.2 Additional localizing constraints to improve on ξcpsd
∗ (A)

In order to strengthen the bounds we may require nonnegativity over a (truncated) quadratic
module generated by a larger set of localizing polynomials for A. The following lemma gives
one such approach.

Lemma 3.5. Let A ∈ CSn+. For v ∈ Rn, the polynomial gv = vTAv−
(∑n

i=1 vixi
)2

is localizing
for A (at any Gram factorization by Hermitian positive semidefinite matrices).

Proof. If X1, . . . , Xn is a Gram decomposition of A by Hermitian positive semidefinite matrices,
then

vTAv = Tr
(( n∑

i=1

viXi

)2)
≥ λmax

(( n∑
i=1

viXi

)2)
,

hence vTAvI − (
∑n

i=1 viXi)
2 � 0.

Given a set V ⊆ Rn, we consider the larger set

S cpsd
A,V = S cpsd

A ∪ {gv : v ∈ V }

of localizing polynomials for A. For t ∈ N ∪ {∞, ∗}, denote by ξcpsd
t,V (A) the parameter ob-

tained by replacing in ξcpsd
t (A) the nonnegativity constraint on M2t(S

cpsd
A ) by nonnegativity

on M2t(S
cpsd
A,V ). We have ξcpsd

t,∅ (A) = ξcpsd
t (A) and

ξcpsd
t (A) ≤ ξcpsd

t,V (A) ≤ cpsd-rankC(A) for all V ⊆ Rn.

By scaling invariance, we can add all of the above constraints (for all v ∈ Rn) by setting
V to be the unit sphere Sn−1. Since Sn−1 is a compact metric space, there exists a sequence
V1 ⊆ V2 ⊆ . . . ⊆ Sn−1 of finite subsets such that

⋃
k≥1 Vk is dense in Sn−1.
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Proposition 3.6. Consider a matrix A ∈ CSn+. For t ∈ {∞, ∗}, we have

lim
k→∞

ξcpsd
t,Vk

(A) = ξcpsd
t,Sn−1(A).

Proof. Let ε > 0. Since
⋃
k Vk is dense in Sn−1, there is an integer k ≥ 1 so that for every

u ∈ Sn−1 there exists a vector v ∈ Vk satisfying

‖u− v‖1 ≤
ελmin(A)

4
√
nmaxiAii

and ‖u− v‖2 ≤
ελmin(A)

4Tr(A2)1/2
. (11)

Propositions 3.1 and 3.2 have analogues for the programs ξcpsd
t,V (A). These show that ξcpsd

t,Vk
(A),

for t = ∞ (t = ∗), is the infimum over all α ≥ 0 for which there exist a (finite dimensional)

unital C∗-algebra A with tracial state τ and X ∈ DA(S cpsd
A,Vk

) such that A = α · (τ(XiXj)).
Below we show that

X′ =
√

1− εX ∈ DA(S cpsd
A,Sn−1).

This implies that L ∈ R〈x〉∗ defined by L(p) = α/(1− ε)τ(p(X′)) is feasible for ξcpsd
t,Sn−1(A) with

objective value L(1) = α/(1− ε). Since ε > 0 was arbitrary, this completes the proof.
Consider the map

fX : Sn−1 → R, v 7→
∥∥∥ n∑
i=1

viXi

∥∥∥2
,

where ‖ · ‖ denotes the C∗-algebra norm of A. For α ∈ R and a ∈ A with a∗ = a, we have

α ≥ ‖a‖ if and only if α− a � 0 in A, or, equivalently, α2 − a2 � 0 in A. Since X ∈ DA(S cpsd
A,Vk

)

we have vTAv − fX(v) ≥ 0 for all v ∈ Vk, and hence

vTAv − fX′(v) = vTAv
(

1− (1− ε)fX(v)

vTAv

)
≥ vTAv

(
1− (1− ε)

)
= εvTAv ≥ ελmin(A).

Let u ∈ Sn−1 and let v ∈ Vk be such that (11) holds. Using Cauchy-Schwarz we have

|uTAu− vTAv| = |(u− v)TA(u+ v)| = |〈A, (u− v)(u+ v)T〉|

≤
√

Tr(A2)
√

Tr((u+ v)(u− v)T(u− v)(u+ v)T)

≤
√

Tr(A2)‖u− v‖2‖u+ v‖2 ≤ 2
√

Tr(A2)‖u− v‖2

≤ 2
√

Tr(A2)
ελmin(A)

4
√

Tr(A2)
=
ελmin(A)

2
.

Since
√
AiiXi − X2

i is positive in A, we have that
√
Aii − Xi is positive in A by (6) and (7),

which implies ‖Xi‖ ≤
√
Aii. By the reverse triangle inequality we then have

|fX′(u)− fX′(v)| =
∣∣∣∥∥ n∑

i=1

uiX
′
i

∥∥− ∥∥ n∑
i=1

viX
′
i

∥∥∣∣∣(∥∥ n∑
i=1

uiX
′
i

∥∥+
∥∥ n∑
i=1

viX
′
i

∥∥)
≤
∥∥ n∑
i=1

(vi − ui)X ′i
∥∥2
√
nmaxi

√
Aii

≤
( n∑
i=1

|vi − ui|‖X ′i‖
)

2
√
nmaxi

√
Aii

≤ ‖u− v‖12
√
nmaxiAii ≤

ελmin(A)

4
√
nmaxiAii

2
√
nmaxiAii =

ελmin(A)

2
.

Combining the above inequalities we obtain that uTAu − fX′(u) ≥ 0 for all Sn−1, and hence

uTAu−
(∑n

i=1 uiX
′
i

)2
is positive in A. Thus we have X′ ∈ DA(S cpsd

A,Sn−1).
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We now discuss two examples where the bounds ξcpsd
∗,V (A) go beyond ξcpsd

∗ (A).

Example 3.7. Consider the matrix

A =

(
1 1/2

1/2 1

)
= Gram

((1 0
0 0

)
,

(
1/2 1/2
1/2 1/2

))
, (12)

with cpsd-rankC(A) = 2. We can also write A = Gram(Y1, Y2), where

Y1 =
1√
2

1 0 0
0 1 0
0 0 0

 , Y2 =
1√
2

1 0 0
0 0 0
0 0 1

 .

With Xi =
√

2 Yi we have I −X2
i � 0. Hence the linear form L = LX/2 is feasible for ξcpsd

∗ (A),
which shows that ξcpsd

∗ (A) ≤ L(1) = 3/2. In fact, this form L gives an optimal flat solution to
ξcpsd

2 (A), as we can check using a semidefinite programming solver, and hence ξcpsd
∗ (A) = 3/2.

In passing, we observe that ξcpsd
1 (A) = 4/3, which coincides with the analytic lower bound (15)

(see also Lemma 3.13 below).
For e = (1, 1) ∈ R2 and V = {e}, this form L is not feasible for ξcpsd

∗,V (A), because for
p = 1 − 3x1 − 3x2 we have L(p∗gep) = −9/2 < 0. This means that the localizing constraint
L(p∗gep) ≥ 0 is not redundant: For each t ≥ 2 it cuts off part of the feasibility region of ξcpsd

t (A).
Indeed, using a semidefinite programming solver we find an optimal flat solution of ξcpsd

3,V (A)

with objective value (5−
√

3)/2 ≈ 1.633, which shows

ξcpsd
∗,V (A) = (5−

√
3)/2 > 3/2 = ξcpsd

∗ (A). 4

Example 3.8. Consider the symmetric circulant matrices

M(α) =


1 α 0 0 α
α 1 α 0 0
0 α 1 α 0
0 0 α 1 α
α 0 0 α 1

 .

For 0 ≤ α ≤ 1/2 we have M(α) ∈ CS5
+ with cpsd-rankC(M(α)) ≤ 5. To see this we set

β = (1 +
√

1− 4α2)/2 and observe that the matrices

Xi = Diag(
√
β ei +

√
1− β ei+1) ∈ S5

+, i ∈ [5], (with e6 := e1),

form a factorization of M(α). As M(α) is supported by a cycle, we have M(α) ∈ CS5
+ if and

only if M(α) ∈ CP5 and thus M(α) ∈ CS5
+ if and only if 0 ≤ α ≤ 1/2 [LP15].

By using the formulation in Proposition 3.3, we can use the above factorization to derive
ξcpsd
∗ (M(1/2)) ≤ 5/2. However, using a semidefinite programming solver we see that

ξcpsd
2,V (M(1/2)) = 5,

where V is the set containing the vector (1,−1, 1,−1, 1) and its cyclic shifts. Hence the bound
ξcpsd

2,V (M(1/2)) is tight: It certifies cpsd-rankC(M(1/2)) = 5, while the other known bounds, the
rank bound

√
rank(A) and the analytic bound (15), only give cpsd-rankC(A) ≥ 3.

We now observe that there exist 0 < ε, δ < 1/2 such that cpsd-rankC(M(α)) = 5 for all

α ∈ [0, ε]∪ [δ, 1/2]. Indeed, this follows from ξcpsd
1 (M(0)) = 5 (by Lemma 3.13), the above result

ξcpsd
2,V (M(1/2)) = 5, and the lower semicontinuity of α 7→ ξcpsd

2,V (M(α)) shown in Lemma 3.14.
As the matrices M(α) are nonsingular, the above factorization shows that their cp-rank is equal
to 5 for all α ∈ [0, 1/2]; whether they all have cpsd-rank equal to 5 is not known. 4
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3.3 Boosting the bounds

In this section we propose some additional constraints that can be added to strengthen the
bounds ξcpsd

t,V (A) for finite t. These constraints sometimes shrink the feasibility region of ξcpsd
t,V (A)

for t ∈ N, but they are redundant for the parameters ξcpsd
∞,V (A) and ξcpsd

∗,V (A). The latter is shown
using the reformulation of ξcpsd

t,V (A) (t ∈ {∞, ∗}) in terms of C∗-algebras.
We first mention how to construct localizing constraints of “bilinear type”, inspired by the

work of Berta, Fawzi and Scholz [BFS16]. Note that as for localizing constraints, these bilinear
constraints can be modeled as semidefinite constraints.

Lemma 3.9. Let A ∈ CSn+, t ∈ N ∪ {∞, ∗}, and let g, g′ be localizing for A. If we add the
constraints

L(p∗gpg′) ≥ 0 for p ∈ R〈x〉 with deg(p∗gpg′) ≤ 2t (13)

to ξcpsd
t,V (A), then it still lower bounds cpsd-rankC(A). Moreover, if g, g′ ∈ M(S cpsd

A,V ) then the

constraints (13) are redundant for ξcpsd
∞,V (A) and ξcpsd

∗,V (A).

Proof. Let X ∈ (Hd+)n be a Gram decomposition of A, and let L be the real part of the trace
evaluation at X. Then, p(X)∗g(X)p(X) � 0 and g′(X) � 0, hence

L(p∗gpg′) = Re(Tr(p(X)∗g(X)p(X)g′(X))) ≥ 0.

Now suppose that L is feasible for ξcpsd
t,V (A) with t ∈ {∞, ∗}. By Theorem 2.1 there exist a

unital C∗-algebra A with tracial state τ and X ∈ D(S cpsd
A,V ) such that L(p) = L(1)τ(p(X)) for

all p ∈ R〈x〉. Since g, g′ ∈M(S cpsd
A,V ) we know that g(X), g′(X) are positive elements in A, that

is, g(X) = a∗a and g′(X) = b∗b for some a, b ∈ A. Then we have

L(p∗gpg) = L(1) τ(p∗(X) g(X) p(X) g′(X))

= L(1) τ(p∗(X) a∗a p(X) b∗b)

= L(1) τ((a p(X) b∗)∗a p(X) b∗) ≥ 0

where we use that τ is a positive tracial state on A.

Second, we show how to use zero entries in A and vectors in the kernel of A to enforce new
constraints on ξcpsd

t (A).

Lemma 3.10. Let A ∈ CSn+ and t ∈ N ∪ {∞, ∗}. If we add the constraints

L = 0 on I2t

({ n∑
i=1

vixi : v ∈ kerA
}
∪
{
xixj : Aij = 0

})
(14)

to ξcpsd
t,V (A), then we still get a lower bound on cpsd-rankC(A). Moreover, these constraints are

redundant for ξcpsd
∞,V (A) and ξcpsd

∗,V (A).

Proof. Let X ∈ (Hd+)n be a Gram decomposition of A, and let L be the real part of the trace
evaluation LX. If Av = 0, then 0 = vTAv = Tr((

∑n
i=1 viXi)

2), which implies
∑n

i=1 viXi = 0
and thus L((

∑n
I=1 vixi)p) = Re(Tr((

∑n
i=1 viXi)p(X))) = 0.

If Aij = 0, then Tr(XiXj) = 0, which implies XiXj = 0, since Xi and Xj are positive
semidefinite. It follows that L(xixip) = Re(Tr(XiXjp(X))) = 0.

As in the proof of the previous lemma, if L is feasible for ξcpsd
t,V (A) with t ∈ {∞, ∗} then,

by Theorem 2.1, there exist a unital C∗-algebra A with tracial state τ and X ∈ D(S cpsd
A,V ) such

that L(p) = L(1)τ(p(X)) for all p ∈ R〈x〉. Moreover, by Lemma 2.10 we may assume τ to be
faithful. If v ∈ kerA then 0 = vTAv = L((

∑
i vixi)

2) = L(1)τ((
∑

i viXi)
2), and hence, since
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τ is faithful,
∑

i viXi = 0 in A. It follows that L(p(
∑

i vixi)) = L(1)τ(p(X) 0) = 0 for all
p ∈ R〈x〉. Analogously, if Aij = 0, then L(xixj) = 0 implies τ(XiXj) = 0 and, since Xi, Xj are
positive in A and τ is faithful, thus XiXj = 0. From which it follows that L(pxixj) = 0 for all
p ∈ R〈x〉.

Note that the constraints L(p (
∑n

i=1 vixi)) = 0 for p ∈ R〈x〉t, which are implied by (14),
are in fact redundant, because, if v ∈ ker(A), then the vector obtained by extending v with

zeros belongs to ker(Mt(L)), since Mt(L) � 0. Also, for an implementation of ξcpsd
t (A) with the

additional constraints (14), it is more efficient to index the moment matrices with a basis for
R〈x〉t modulo the ideal It

(
{
∑

i vixi : v ∈ ker(A)} ∪ {xixj : Aij = 0}
)
.

3.4 Additional properties of the bounds

Here we list some additional properties of the parameters ξcpsd
t (A) for t ∈ N∪ {∞, ∗}. First we

state some properties for which the proofs are immediate and thus omitted.

Lemma 3.11. Suppose A ∈ CSn+ and t ∈ N ∪ {∞, ∗}.

1. If P is a permutation matrix, then ξcpsd
t (A) = ξcpsd

t (PTAP ).

2. If B is a principal submatrix of A, then ξcpsd
t (B) ≤ ξcpsd

t (A).

3. If D is a positive definite diagonal matrix, then ξcpsd
t (A) = ξcpsd

t (DAD).

We also have the following direct sum property, where the equality follows using the C∗-
algebra reformulations as given in Proposition 3.1 and Proposition 3.2.

Lemma 3.12. If A ∈ CSn+ and B ∈ CSm+ , then ξcpsd
t (A ⊕ B) ≤ ξcpsd

t (A) + ξcpsd
t (B), where

equality holds for t ∈ {∞, ∗}.

Proof. To prove the inequality we take LA and LB feasible for ξcpsd
t (A) and ξcpsd

t (B), and
construct a feasible L for ξcpsd

t (A⊕B) by L(p(x,y)) = LA(p(x,0)) + LB(p(0,y)).
Now we show equality for t =∞ (t = ∗). By Proposition 3.1 (Proposition 3.2), ξcpsd

t (A⊕B)
is equal to the smallest α ≥ 0 for which there exists a (finite dimensional) unital C∗-algebra A
with tracial state τ and (X,Y) ∈ DA(S cpsd

A⊕B) such that A = α · (τ(XiXj)), B = α · (τ(YiYj))

and (τ(XiYj)) = 0. This implies X ∈ DA(S cpsd
A ) and Y ∈ DA(S cpsd

B ). Let PA be the projection
onto the space

∑
i Im(Xi) and define LA ∈ R〈x〉∗ by LA(p) = α · τ(p(X)PA). It follows that LA

is is nonnegative on M(S cpsd
A ), and

LA(xixj) = α τ(xixjPA) = α τ(xixj) = Aij ,

so LA is feasible for ξcpsd
∞ (A) with LA(1) = ατ(PA). In the same way we consider the projection

PB onto the space
∑

j Im(Yj) and define a feasible solution LB for ξcpsd
t (B) with LB(1) =

ατ(PB). By Lemma 2.10 we may assume τ to be faithful, so that positivity of Xi and Yj
together with τ(XiYj) = 0 implies XiYj = 0 for all i and j, and thus

∑
i Im(Xi) ⊥

∑
j Im(Yj).

This implies I � PA + PB and thus τ(PA + PB) ≤ τ(1) = 1. We have

LA(1) + LB(1) = α τ(PA) + ατ(PB) ≤ α τ(1) = α,

so ξcpsd
t (A) + ξcpsd

t (B) ≤ LA(1) + LB(1) ≤ α, and thus ξcpsd
t (A) + ξcpsd

t (B) ≤ ξcpsd
t (A ⊕ B),

completing the proof.

Note that the completely positive semidefinite rank of a matrix satisfies the same properties
as those mentioned in the above two lemmas, where the inequality in Lemma 3.12 is always an
equality: cpsd-rankC(A⊕B) = cpsd-rankC(A) + cpsd-rankC(B) [PSVW16, GdLL17a].

The following lemma shows that the first level of our hierarchy is at least as good as the
analytic lower bound (15) on the cpsd-rank derived in [PSVW16, Theorem 10].
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Lemma 3.13. For any non-zero matrix A ∈ CSn+ we have

ξcpsd
1 (A) ≥

(∑n
i=1

√
Aii
)2∑n

i,j=1Aij
. (15)

Proof. Let L be feasible for ξcpsd
1 (A). Since L is nonnegative on M2(S cpsd

A ), it follows that
L(
√
Aiixi − x2

i ) ≥ 0, implying
√
AiiL(xi) ≥ L(x2

i ) = Aii and thus L(xi) ≥
√
Aii. Moreover,

the matrix M1(L) is positive semidefinite. By taking the Schur complement with respect to
its upper left corner (indexed by 1) it follows that the matrix L(1) · A − (L(xi)L(xj)) is pos-
itive semidefinite. Hence the sum of its entries is nonnegative, which gives L(1)(

∑
i,j Aij) ≥

(
∑

i L(xi))
2 ≥ (

∑
i

√
Aii)

2 and shows the desired inequality.

As an application of Lemma 3.13, the first bound ξcpsd
1 is exact for the k×k identity matrix:

ξcpsd
1 (Ik) = cpsd-rankC(Ik) = k. Moreover, by combining with Lemma 3.11, it follows that

ξcpsd
1 (A) ≥ k if A contains a diagonal positive definite k × k principal submatrix. A slightly

more involved example is given by the 5 × 5 circulant matrix A whose entries are given by
Aij = cos((i − j)4π/5)2 (i, j ∈ [5]); this matrix was used in [FGP+15] to show a separation
between the completely positive semidefinite cone and the completely positive cone, and it was
shown that cpsd-rankC(A) = 2. The analytic lower bound of [PSVW16] also evaluates to 2,
hence Lemma 3.13 shows that our bound is tight on this example.

We now examine further analytic properties of the parameters ξcpsd
t (·). For each r ∈ N,

the set of matrices A ∈ CSn+ with cpsd-rankC(A) ≤ r is closed, which shows that the function
A 7→ cpsd-rankC(A) is lower semicontinuous. We now show that the functions A 7→ ξcpsd

t (A)
have the same property. The other bounds defined in this paper are also lower-semicontinuous,
with a similar proof.

Lemma 3.14. For every t ∈ N ∪ {∞} and V ⊆ Rn, the function

Sn → R ∪ {∞}, A 7→ ξcpsd
t,V (A)

is lower semicontinuous.

Proof. It suffices to show the result for t ∈ N, because ξcpsd
∞,V (A) = supt ξ

cpsd
t,V (A), and the

pointwise supremum of lower semicontinuous functions is lower semicontinuous. We show that
the level sets {A ∈ Sn : ξcpsd

t,V (A) ≤ r} are closed. For this we consider a sequence (Ak)k∈N

of symmetric matrices converging to A ∈ Sn such that ξcpsd
t,V (Ak) ≤ r for all k. We show that

ξcpsd
t,V (A) ≤ r. Let Lk ∈ R〈x〉∗2t be an optimal solution to ξcpsd

t,V (Ak). As Lk(1) ≤ r for all k, it
follows from Lemma 2.12 that there is a pointwise converging subsequence of (Lk), still denoted
(Lk) for simplicity, that has a limit L ∈ R〈x〉∗2t with L(1) ≤ r. To complete the proof we

show that L is feasible for ξcpsd
t,V (A). By the pointwise convergence of Lk to L, for every ε > 0,

p ∈ R〈x〉, and i ∈ [n], there exists a K ∈ N such that for all k ≥ K we have

|L(p∗xip)− Lk(p∗xip)| < min{1, ε√
Aii
}, |L(p∗x2

i p)− Lk(p∗x2
i p)| < ε,

|
√
Aii −

√
(Ak)ii| <

ε

L(p∗xip) + 1
.

Hence we have

L(p∗(
√
Aiixi − x2

i )p) =
√
Aii

(
L(p∗xip)− Lk(p∗xip) + Lk(p

∗xip)
)

−
(
L(p∗x2

i p)− Lk(p∗x2
i p) + Lk(p

∗x2
i p)
)

≥ −2ε+
√
Aii Lk(p

∗xip)− Lk(p∗x2
i p)

≥ −3ε+
√

(Ak)ii Lk(p
∗xip)− Lk(p∗x2

i p)

= −3ε+ Lk(p
∗(
√

(Ak)ii xi − x2
i )p) ≥ −3ε,
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where in the second inequality we use that 0 ≤ Lk(p
∗xip) ≤ L(p∗xip) + 1. Letting ε→ 0 gives

L(p∗(
√
Aiixi − x2

i )p) ≥ 0.
Similarly one can show that L(p∗(vTAv − (

∑
i vixi)

2)p) ≥ 0 for all v ∈ V , p ∈ R〈x〉.

If we restrict to completely positive semidefinite matrices with an all-ones diagonal, that is,
to CSn+ ∩ En, we can show an even stronger property. Here En is the elliptope, which is the set
of n× n positive semidefinite matrices with an all-ones diagonal.

Lemma 3.15. For every t ∈ N ∪ {∞}, the function

CSn+ ∩ En → R, A 7→ ξcpsd
t (A)

is convex, and hence continuous on the interior of its domain.

Proof. Let A,B ∈ CSn+ ∩ En and 0 < λ < 1. Let LA and LB be optimal solutions for ξcpsd
t (A)

and ξcpsd
t (B). Since the diagonals of A and B are the same, we have S cpsd

A = S cpsd
B . So

L = λLA + (1− λ)LB is feasible for ξcpsd
t (λA+ (1− λ)B), which implies

ξcpsd
t (λA+ (1− λ)B) ≤ L(1) = λLA(1) + (1− λ)LB(1) = λξcpsd

t (A) + (1− λ)ξcpsd
t (B).

Example 3.16. In this example we show that for t ≥ 1, the function

CSn+ → R, A 7→ ξcpsd
t (A)

is not continuous. For this we consider the matrices

Ak =

(
1/k 0
0 1

)
∈ CS2

+,

with cpsd-rankC(Ak) = 2 for all k ≥ 1. As Ak is diagonal positive definite we have ξcpsd
t (Ak) = 2

for all t, k ≥ 1, while ξcpsd
t (limk→∞Ak) = 1. This argument extends to CSn+ with n > 2. This

example also shows that the first level of the hierarchy ξcpsd
1 (·) can be strictly better than the

analytic lower bound (15) of [PSVW16]. 4

Example 3.17. In this example we determine ξcpsd
t (A) for all t ≥ 1 and A ∈ CS2

+. In view of
Lemma 3.11(3) we only need to find ξcpsd

t (A(α)) for 0 ≤ α ≤ 1, where A(α) =
(

1 α
α 1

)
.

The first bound ξcpsd
1 (A(α)) is equal to the analytic bound 2/(α + 1) from (15), where the

equality follows from the fact that L given by L(xixj) = A(α)ij , L(x1) = L(x2) = 1 and
L(1) = 2/(α+ 1) is feasible for ξcpsd

1 (A(α)).

For t ≥ 2 we show ξcpsd
t (A(α)) = 2 − α. By the above this is true for α = 0 and α = 1,

and in Example 3.7 we show ξcpsd
t (A(1/2)) = 3/2 for t ≥ 2. The claim then follows since the

function α 7→ ξcpsd
t (A(α)) is convex by Lemma 3.15. 4

4 Lower bounds on the completely positive rank

The best current approach for lower bounding the completely positive rank of a matrix is due
to Fawzi and Parrilo [FP16]. Their approach relies on the atomicity of the completely positive
rank, that is, the fact that cp-rank(A) = r if and only if A has an atomic decomposition
A =

∑r
k=1 vkv

T
k for nonnegative vectors vk. In other words, if cp-rank(A) = r, then A/r can be

written as a convex combination of r rank one positive semidefinite matrices vkv
T
k that satisfy

0 ≤ vkvTk ≤ A and vkv
T
k � A. Based on this observation Fawzi and Parrilo define the parameter

τcp(A) = min
{
α : α ≥ 0, A ∈ α · conv

{
R ∈ Sn : 0 ≤ R ≤ A, R � A, rank(R) ≤ 1

}}
,
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as lower bound for cp-rank(A). They also define the semidefinite programming parameter

τ sos
cp (A) = min

{
α : α ∈ R, X ∈ Sn2

,(
α vec(A)T

vec(A) X

)
� 0,

X(i,j),(i,j) ≤ A2
ij for 1 ≤ i, j ≤ n,

X(i,j),(k,l) = X(i,l),(k,j) for 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ n,
X � A⊗A

}
,

as an efficiently computable relaxation of τcp(A), and they show rank(A) ≤ τ sos
cp (A), so that

rank(A) ≤ τ sos
cp (A) ≤ τcp(A) ≤ cp-rank(A).

Instead of the atomic point of view, here we take the matrix factorization perspective, which
allows us to obtain bounds by adapting the techniques from Section 3 to the commutative set-
ting. Indeed, we may view a factorization A = (aTi aj) by nonnegative vectors as a factorization
by diagonal (and thus pairwise commuting) positive semidefinite matrices.

Before presenting the details of our hierarchy of lower bounds, we mention some of our results
in order to pin point the link to the parameters τ sos

cp (A) and τcp(A). The direct analogue of
ξcpsd
t (A) in the commutative setting leads to a hierarchy that does not converge to τcp(A), but we

provide two approaches to strengthen it that do converge to τcp(A). The first approach is based
on a generalization of the tensor constraints in τ sos

cp (A). Here we also provide a computationally
more efficient version of these tensor constraints, leading to a hierarchy whose second level is
at least as good as τ sos

cp (A) while being defined by a smaller semidefinite program. The second
approach relies on adding localizing constraints for vectors in the unit sphere as in Section 3.2.

The following hierarchy is a commutative analogue of the hierarchy from Section 3, where
we may now add the localizing polynomials Aij − xixj for all 1 ≤ i < j ≤ n, which was not
possible in the noncommutative setting of the completely positive semidefinite rank. For each
t ∈ N ∪ {∞} we consider the semidefinite program

ξcp
t (A) = min

{
L(1) : L ∈ R[x1, . . . , xn]∗2t,

L(xixj) = Aij for i, j ∈ [n],

L ≥ 0 on M2t(S
cp
A )
}
,

where we set

S cp
A =

{√
Aiixi − x2

i : i ∈ [n]
}
∪
{
Aij − xixj : 1 ≤ i < j ≤ n

}
.

We additionally define ξcp
∗ (A) by adding the constraint rank(M(L)) < ∞ to ξcp

∞(A). We also
consider the strengthening ξcp

t,†(A), where we add to ξcp
t (A) the positivity constraints

L(gu) ≥ 0 for g ∈ {1} ∪ S cp
A and u ∈ [x]2t−deg(g) (16)

and the tensor constraints

(L((ww′)c))w,w′∈〈x〉=l � A
⊗l for all integers 2 ≤ l ≤ t, (17)

which generalize the case l = 2 used in the relaxation τ sos
cp (A). Here, for a word w ∈ 〈x〉, we

denote by wc the corresponding (commutative) monomial in [x]. The tensor constraints (17)
involve matrices indexed by the noncommutative words of length exactly l. In Section 4.4 we
show a more economical way to rewrite these constraints as (L(mm′))m,m′∈[x]=l � QlA

⊗lQT
l ,

thus involving smaller matrices indexed by commutative words of degree l.
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Note that, as before, we can strengthen the bounds by adding other localizing polynomials
to the set S cp

A . In particular, we can follow the approach of Section 3.2. Another possibility is
to add localizing constraints specific to the commutative setting: we can add each monomial
u ∈ [x] to S cp

A (see Section 4.5.2 for an example).
The bounds ξcp

t and ξcp
t,† are monotonically nondecreasing in t and they are invariant under

simultaneously permuting the rows and columns of A and under scaling a row and column of
A by a positive number. In Propositions 4.1 and 4.2 we show

τ sos
cp (A) ≤ ξcp

t,†(A) ≤ τcp(A) for t ≥ 2,

and in Proposition 4.5 we show the equality ξcp
∗,†(A) = τcp(A).

4.1 Comparison to τ sos
cp (A)

We first show that the semidefinite programs defining ξcp
t,†(A) are valid relaxations for the com-

pletely positive rank. More precisely, we show that they lower bound τcp(A).

Proposition 4.1. For A ∈ CPn and t ∈ N ∪ {∞, ∗} we have ξcp
t,†(A) ≤ τcp(A).

Proof. It suffices to show the inequality for t = ∗. For this consider a decomposition A =
α
∑r

k=1 λkRk, where α ≥ 1, λk > 0,
∑r

k=1 λk = 1, 0 ≤ Rk ≤ A, Rk � A, and rankRk = 1.
There are nonnegative vectors vk such that Rk = vkv

T
k . Define the linear map L ∈ R[x]∗ by

L = α
∑r

k=1 λkLvk , where Lvk is the evaluation at vk.
The equality (L(xixj)) = A follows from the identity A = α

∑r
k=1 λkRk. The constraints

L((
√
Aiixi − x2

i )p
2) ≥ 0 follow because

Lvk(
√
Aiixi − x2

i )p
2) = (

√
Aii(vk)i − (vk)

2
i )p(vk)

2 ≥ 0,

where we use that (vk)i ≥ 0 and (vk)
2
i = (Rk)ii ≤ Aii implies (vk)

2
i ≤ (vk)i

√
Aii. The constraints

L((Aij − xixj)p2) ≥ 0 and

L(gu) ≥ 0 for g ∈ {1} ∪ S cp
A and u ∈ [x]

follow in a similar way.
It remains to be shown that Xl � A⊗l for all l, where we set Xl = (L(uv))u,v∈〈x〉=l . Note

that X1 = A. We adapt the argument used in [FP16] to show Xl � A⊗l for all l ≥ 2. Suppose

A⊗(l−1) � Xl−1. Combining A − Rk � 0 and Rk � 0 gives (A − Rk) ⊗ R
⊗(l−1)
k � 0 and thus

A⊗R⊗(l−1)
k � R⊗lk for each k. Scale by factor αλk and sum over k to get

A⊗Xl−1 =
∑
k

αλkA⊗R
⊗(l−1)
k �

∑
k

αλkR
⊗l
k = Xl.

Finally, combining with A⊗(l−1) −Xl−1 � 0 and A � 0, we obtain

A⊗l = A⊗ (A⊗(l−1) −Xl−1) +A⊗Xl−1 � A⊗Xl−1 � Xl.

Now we show that the new parameter ξcp
2,†(A) is at least as good as τ sos

cp (A). Later in
Section 4.5.1 we will give an example where the inequality is strict.

Proposition 4.2. For A ∈ CPn we have τ sos
cp (A) ≤ ξcp

2,†(A).

Proof. Let L be feasible for ξcp
2,†(A). We will construct a feasible solution to the program defining

τ sos
cp (A) with objective value L(1), which implies τ sos

cp (A) ≤ L(1) and thus the desired inequality.
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For this set α = L(1) and define the symmetric n2 × n2 matrix X by X(i,j),(k,l) = L(xixjxkxl)
for i, j, k, l ∈ [n]. Then the matrix

M :=

(
α vec(A)T

vec(A) X

)
is positive semidefinite. This follows because M is obtained from the principal submatrix of
M2(L) indexed by the monomials 1 and xixj (1 ≤ i ≤ j ≤ n) where the rows/columns indexed
by xjxi with 1 ≤ i < j ≤ n are duplicates of the rows/columns indexed by xixj .

We have L((Aij−xixj)xixj) ≥ 0 for all i, j. Indeed, for i 6= j this follows using the constraint
L((Aij − xixj)u) ≥ 0 with u = xixj (from (16)), and for i = j this follows from

L((Aii − x2
i )x

2
i ) = L((

√
Aii − xi)2 + 2(

√
Aiixi − x2

i )) ≥ 0,

which holds because of (7), the constraint L(p2) ≥ 0 for deg(p) ≤ 2, and the constraint
L(
√
Aiixi − x2

i ) ≥ 0. Using L(xixj) = Aij , we get X(i,j),(i,j) = L(x2
ix

2
j ) ≤ A2

ij .
We also have

X(i,j),(k,l) = L(xixjxkxl) = L(xixlxkxj) = X(i,l),(k,j),

and the constraint (L(uv))u,v∈〈x〉=2
� A⊗2 implies X � A⊗A.

4.2 Convergence of the basic hierarchy

We first summarize convergence properties of the hierarchy ξcp
t (A). Note that unlike in Section 3

where we can only claim the inequality ξcpsd
∞ (A) ≤ ξcpsd

∗ (A), here we can show ξcp
∞(A) = ξcp

∗ (A).

Proposition 4.3. Let A ∈ CPn. For every t ∈ N ∪ {∞, ∗} the optimum in ξcp
t (A) is attained,

and ξcp
t (A)→ ξcp

∞(A) = ξcp
∗ (A). If ξcp

t (A) admits a flat optimal solution, then ξcp
t (A) = ξcp

∞(A).
Moreover, ξcp

∞(A) = ξcp
∗ (A) is the minimum value of L(1) taken over all conic combinations L

of evaluations at elements of D(S cp
A ) satisfying A = (L(xixj)).

Proof. We may assume A 6= 0. Since
√
Aiixi − x2

i ∈ S cp
A for all i, using (7) we obtain that

Tr(A) −
∑

i x
2
i ∈ M2(S cp

A ). By adapting the proof of Proposition 3.1 to the commutative
setting, we see that the optimum in ξcp

t (A) is attained for t ∈ N ∪ {∞}, and ξcp
t (A)→ ξcp

∞(A).
We now show the inequality ξcp

∗ (A) ≤ ξcp
∞(A), which implies that equality holds. For this,

let L be optimal for ξcp
∞(A). By Theorem 2.8, the restriction of L to R[x]2 extends to a conic

combination of evaluations at points in D(S cp
A ). It follows that this extension is feasible for

ξcp
∗ (A) with the same objective value. This shows that ξcp

∗ (A) ≤ ξcp
∞(A), that the optimum in

ξcp
∗ (A) is attained, and that ξcp

∗ (A) is the minimum of L(1) over all conic combinations L of
evaluations at elements of D(S cp

A ) such that A = (L(xixj)). Finally, by Theorem 2.7 we have
ξcp
t (A) = ξcp

∞(A) if ξcp
t (A) admits a flat optimal solution.

Next, we give a reformulation for the parameter ξcp
∗ (A), which is similar to the formulation

of τcp(A), although we miss in it the constraint R � A present in τcp(A).

Proposition 4.4. We have

ξcp
∗ (A) = min

{
α : α ≥ 0, A ∈ α · conv

{
R ∈ Sn : 0 ≤ R ≤ A, rank(R) ≤ 1

}}
.

Proof. This follows directly from the reformulation of ξcp
∗ (A) in Proposition 4.3 in terms of

conic evaluations at points in D(S cp
A ) after observing that, for v ∈ Rn, we have v ∈ D(S cp

A ) if
and only if the matrix R = vvT satisfies 0 ≤ R ≤ A.
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4.3 Additional constraints and convergence to τcp(A)

The reformulation of the parameter ξcp
∗ (A) in Proposition 4.4 differs from τcp(A) in that the

constraint R � A is missing. In order to have a hierarchy converging to τcp(A) we need to add
constraints to enforce that L can be decomposed as a conic combination of evaluation maps
at nonnegative vectors v satisfying vvT � A. Here we present two ways to achieve this goal.
First we show that the tensor constraints (17) suffice in the sense that ξcp

∗,†(A) = τcp(A) (note
that the constraints (16) are not needed for this result). However, because of the special form
of the tensor constraints we do not know whether ξcp

t,†(A) admitting a flat optimal solution

implies ξcp
t,†(A) = ξcp

∗,†(A), and we do not know whether ξcp
∞,†(A) = ξcp

∗,†(A). Second, we adapt
the approach of adding additional localizing constraints from Section 3.2 to the commutative
setting, where we do show ξcp

∞,Sn−1(A) = ξcp
∗,Sn−1(A) = τcp(A). This yields a doubly indexed

sequence of semidefinite programs whose optimal values converge to τcp(A).

Proposition 4.5. Let A ∈ CPn. For every t ∈ N ∪ {∞} the optimum in ξcp
t,†(A) is attained.

We have ξcp
t,†(A)→ ξcp

∞,†(A) and ξcp
∗,†(A) = τcp(A).

Proof. The attainment of the optima in ξcp
t,†(A) for t ∈ N∪{∞} and the convergence of ξcp

t,†(A) to

ξcp
∞,†(A) can be shown in the same way as the analogue statements for ξcp

t (A) in Proposition 4.3.

We have seen the inequality ξcp
∗,†(A) ≤ τcp(A) in Proposition 4.1. Now we show the reverse

inequality. Let L be feasible for ξcp
∗,†(A). We will show that L is feasible for τcp(A), which

implies τcp(A) ≤ L(1) and thus τcp(A) ≤ ξcp
∗,†(A).

By Proposition 4.2 and the fact that rank(A) ≤ τ sos
cp (A) we have L(1) > 0 (assuming

A 6= 0). By Theorem 2.6, we may write L = L(1)
∑K

k=1 λkLvk , where λk > 0,
∑

k λk = 1, and
Lvk is an evaluation map at a point vk ∈ D(S cp

A ). We define the matrices Rk = vkv
T
k , so that

A = L(1)
∑K

k=1Rk. The matrices Rk satisfy 0 ≤ Rk ≤ A since vk ∈ D(S cp
A ). Clearly also

Rk � 0. It remains to show that Rk � A. For this we use the tensor constraints (17). Using
that L is a conic combination of evaluation maps, we may rewrite these constraints as

L(1)

K∑
k=1

λkR
⊗l
k � A

⊗l,

from which it follows that L(1)λkR
⊗l
k � A⊗l for all k ∈ [K]. Therefore, for all k ∈ [K] and all

vectors v with vTRkv > 0 we have

L(1)λk ≤
(
vTAv

vTRkv

)l
for all l ∈ N. (18)

Suppose there is a k such that Rk 6� A. Then there exists a vector v such that vTRkv > vTAv.
As (vTAv)/(vTRkv) < 1, letting l tend to ∞ we obtain L(1)λk = 0, reaching a contradiction.
It follows that Rk � A for all k ∈ [K].

The second approach for reaching τcp(A) is based on using the extra localizing constraints
from Section 3.2. For V ⊆ Sn−1, define ξcp

t,V (A) by replacing the truncated quadratic module
M2t(S

cp
A ) in ξcp

t (A) by M2t(S
cp
A,V ), where

S cp
A,V = S cp

A ∪
{
vTAv −

( n∑
i=1

vixi

)2
: v ∈ V

}
.

Proposition 3.6 can be adapted to the completely positive setting, so that we have a sequence
of finite subsets V1 ⊆ V2 ⊆ . . . ⊆ Sn−1 with ξcp

∗,Vk(A)→ ξcp
∗,Sn−1(A) as k → ∞. Proposition 4.3

still holds when adding extra localizing constraints, so that for any k ≥ 1 we have

lim
t→∞

ξcp
t,Vk

(A) = ξcp
∗,Vk(A).
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Combining this with Proposition 4.6 below shows that we have a doubly indexed sequence
ξcp
t,Vk

(A) of (finite) semidefinite programs that converges to τcp(A) as t→∞ and k →∞.

Proposition 4.6. For A ∈ CPn we have ξcp
∗,Sn−1(A) = τcp(A).

Proof. The proof is the same as the proof of Proposition 4.4, with the following additional
observation: Given a vector u ∈ Rn, we have u ∈ D(S cp

A,Sn−1) only if uuT � A. The latter
follows from the additional localizing constraints: for each v ∈ Rn we have

0 ≤ vTAv −
(∑

i

viui

)2
= vT(A− uuT)v.

4.4 More efficient tensor constraints

Here we show that for any integer l ≥ 2 the constraint A⊗l− (L((ww′)c))w,w′∈〈x〉=l � 0, used in
the definition of ξcp

t,+(A), can be reformulated in a more economical way using matrices indexed
by commutative monomials in [x]=l instead of noncommutative words in 〈x〉=l. For this we
exploit the symmetry in the matrices A⊗l and (L((ww′)c))w,w′∈〈x〉=l for L ∈ R[x]∗2l. Recall that
for a word w ∈ 〈x〉, we let wc denote the corresponding (commutative) monomial in [x].

Define the matrix Ql ∈ R[x]=l×〈x〉=l by

(Ql)m,w =

{
1/dm if wc = m,

0 otherwise,
(19)

where, for m = xα1
1 · · ·xαnn ∈ [x]=l, we define the multinomial coefficient

dm =
∣∣{w ∈ 〈x〉=l : wc = m

}∣∣ =
l!

α1! · · ·αn!
. (20)

Lemma 4.7. For L ∈ R[x]∗2l we have

Ql(L((ww′)c))w,w′∈〈x〉=lQ
T
l = (L(mm′))m,m′∈[x]=l .

Proof. For m,m′ ∈ [x]l, the (m,m′)-entry of the left hand side is equal to∑
w,w′∈〈x〉=l

QmwQm′w′L((ww′)c) =
∑

w∈〈x〉=l
wc=m

∑
w′∈〈x〉=l
(w′)c=m′

L((ww′)c)

dmdm′
= L(mm′).

The symmetric group Sl acts on 〈x〉=l by (xi1 · · ·xil)σ = xiσ(1) · · ·xiσ(l) for σ ∈ Sl. Let

P =
1

l!

∑
σ∈Sl

Pσ, (21)

where, for any σ ∈ Sl, Pσ ∈ R〈x〉=l×〈x〉=l is the permutation matrix defined by

(Pσ)w,w′ =

{
1 if wσ = w′,

0 otherwise.

A matrix M ∈ R〈x〉=l×〈x〉=l is said to be Sl-invariant if P σM = MP σ for all σ ∈ Sl.

Lemma 4.8. If M ∈ R〈x〉=l×〈x〉=l is symmetric and Sl-invariant, then

M � 0 ⇐⇒ QlMQT
l � 0.
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Proof. The implication M � 0 =⇒ QlMQT
l � 0 is immediate. For the other implication we

need a preliminary fact. Consider the diagonal matrix D ∈ R[x]=l×[x]=l with Dmm = dm for
m ∈ [x]=l. We claim that QT

l DQl = P , the matrix in (21). Indeed, for any w,w′ ∈ 〈x〉=l, we
have

(QT
l DQl)ww′ =

∑
m∈[x]=l

(Ql)mw(Ql)mw′Dmm =

{
1/dm if wc = (w′)c = m,

0 otherwise

=
|{σ ∈ Sl : wσ = w′}|

l!
= Pww′ .

Suppose QlMQT
l � 0, and let λ be an eigenvalue of M with eigenvector z. Since MP = PM ,

we may assume Pz = z, for otherwise we can replace z by Pz, which is still an eigenvector of
M with eigenvalue λ. We may also assume z to be a unit vector. Then λ ≥ 0 can be shown
using the identity QT

l DQl = P as follows:

λ = zTMz = zTPMPz = zT(QT
l DQl)M(QT

l DQl)z = (DQlz)
T(QlMQT

l )DQlz ≥ 0.

We can now derive our symmetry reduction result:

Proposition 4.9. For L ∈ R[x]∗2l we have

A⊗l − (L((ww′)c))w,w′∈〈x〉=l � 0 ⇐⇒ QlA
⊗lQT

l − (L(mm′))m,m′∈[x]=l � 0.

Proof. For any w,w′ ∈ 〈x〉=l we have (PσA
⊗lPT

σ )w,w′ = A⊗lwσ ,(w′)σ = A⊗lw,w′ and

(Pσ(L((uu′)c))u,u′∈〈x〉=lP
∗
σ )w,w′ = L((wσ(w′)σ)c) = L((ww′)c).

This shows that the matrix A⊗l−(L((ww′)c))w,w′∈〈x〉=l is Sl-invariant. Hence the claimed result
follows by using Lemma 4.7 and Lemma 4.8.

4.5 Computational examples

4.5.1 Bipartite matrices

Consider the (p+ q)× (p+ q) matrices

P (a, b) =

(
(a+ q)Ip Jp,q
Jq,p (b+ p)Iq

)
, a, b ∈ R+,

where Jp,q denotes the all-ones matrix of size p × q. We have P (a, b) = P (0, 0) + D for some
nonnegative diagonal matrix D. As can be easily verified, P (0, 0) is completely positive with
cp-rank(P (0, 0)) = pq, so P (a, b) is completely positive with pq ≤ cp-rank(P (a, b)) ≤ pq+p+ q.

For p = 2 and q = 3 we have cp-rank(P (a, b)) = 6 for all a, b ≥ 0, which follows from the
fact that 5× 5 completely positive matrices with at least one zero entry have cp-rank at most
6; see [BSM03, Theorem 3.12]. Fawzi and Parrilo [FP16] show τ sos

cp (P (0, 0)) = 6, and give a
subregion of [0, 1]2 where 5 < τ sos

cp (P (a, b)) < 6. The next lemma shows the bound ξcp
2,†(P (a, b))

is tight for all a, b ≥ 0 and therefore strictly improves on τ sos
cp in this region.

Lemma 4.10. For a, b ≥ 0 we have ξcp
2,†(P (a, b)) ≥ pq.

Proof. Let L be feasible for ξcp
2,†(P (a, b)) and let

B =

(
α cT

c X

)
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be the principal submatrix of M2(L) where the rows and columns are indexed by

{1} ∪ {xixj : 1 ≤ i ≤ p, p+ 1 ≤ j ∈ p+ q}.

It follows that c is the all ones vector c = 1. Moreover, if P (a, b)ij = 0 for some i 6= j, then the
constraints L(xixju) ≥ 0 and L((P (a, b)ij − xixj)u) ≥ 0 imply L(xixju) = 0 for all u ∈ [x]2.
Hence, Xxixj ,xkxl = L(xixjxkxl) = 0 whenever xixj 6= xkxl. It follows that X is a diagonal
matrix. We write

B =

(
α 1T

1 Diag(z1, . . . , zpq)

)
.

Since

(
1 −1T
−1 J

)
� 0 we have

0 ≤ Tr

((
α 1T

1 Diag(z1, . . . , zpq)

)(
1 −1T
−1 J

))
= α− 2pq +

pq∑
k=1

zk.

Finally, by the constraints L((P (a, b)ij − xixj)u) ≥ 0 (with i ∈ [p], j ∈ p + [q] and u = xixj)
and L(xixj) = P (a, b)ij we obtain zk ≤ 1 for all k ∈ [pq]. Combined with the above inequality,
it follows that

L(1) = α ≥ 2pq −
pq∑
k=1

zk ≥ pq,

and hence ξcp
2,†(P (a, b)) ≥ pq.

4.5.2 Examples related to the DJL-conjecture

The Drew-Johnson-Loewy conjecture [DJL94] states that the maximal cp-rank of an n × n
completely positive matrix is equal to bn2/4c. Recently this conjecture has been disproven for
n = 7, 8, 9, 10, 11 in [BSU14]. Although our bounds are not tight for the cp-rank, they are non-
trivial and as such may be of interest for future comparisons. For numerical stability reasons
we have evaluated our bounds on scaled versions of the matrices from [BSU14], so that the
diagonal entries become equal to 1. The matrices M̃7, M̃8 and M̃9 correspond to the matrices
M̃ in Examples 1,2,3 of [BSU14], and M7, M11 correspond to the matrices M in Examples 1
and 4. The column ξcp

2,†(·) + xixj corresponds to the bound ξcp
2,†(·) where we replace S cp

A by

S cp
A ∪ {xixj : 1 ≤ i < j ≤ n}.

Example cp-rank(·) bn2

4 c rank(·) ξcp
1 (·) ξcp

2 (·) ξcp
2,†(·) ξcp

2,†(·) + xixj ξcp
3,†(·)

M7 14 12 7 2.64 4.21 7.21 9.75 10.50

M̃7 14 12 7 2.58 4.66 8.43 9.53 10.50

M̃8 18 16 8 3.23 5.45 8.74 10.41 13.82

M̃9 26 20 9 3.39 5.71 11.60 13.74 17.74
M11 32 30 11 4.32 7.46 20.76 21.84 –

Table 1: Examples from [BSU14] with various bounds on their cp-rank.

5 Lower bounds on the nonnegative rank

In this section we adapt the techniques for the cp-rank from Section 4 to the asymmetric
setting of the nonnegative rank. We may now view a factorization A = (aTi bj)i∈[m],j∈[n] by
nonnegative vectors as a factorization by positive semidefinite diagonal matrices, by writing
Aij = Tr(XiXm+j), with Xi = Diag(ai) and Xm+j = Diag(bj). Note that we can view this as
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a “partial matrix” setting, where for the symmetric matrix (Tr(XiXk))i,k∈[m+n] of size m+ n,
only the off-diagonal entries at the positions (i,m+ j) for i ∈ [m], j ∈ [n] are specified.

This asymmetry requires rescaling the factors in order to get upper bounds on their maximal
eigenvalues, which is needed to ensure the Archimedean property for the selected localizing poly-
nomials. For this we use the well-known fact that for any A ∈ Rm×n+ there exists a factorization
A = (Tr(XiXm+j)) by diagonal nonnegative matrices of size rank+(A), such that

λmax(Xi), λmax(Xm+j) ≤
√
Amax for all i ∈ [m], j ∈ [n],

where Amax := maxi,jAij . To see this, observe that for any rank one matrix R = uvT with
0 ≤ R ≤ A, one may assume 0 ≤ ui, vj ≤

√
Amax for all i, j. Hence, the set

S+
A =

{√
Amaxxi − x2

i : i ∈ [m+ n]
}
∪
{
Aij − xixm+j : i ∈ [m], j ∈ [n]

}
is localizing for A; that is, there exists a minimal factorization X of A with X ∈ D(S+

A ).

Given A ∈ Rm×n≥0 , for each t ∈ N ∪ {∞} we consider the semidefinite program

ξ+
t (A) = min

{
L(1) : L ∈ R[x1, . . . , xm+n]∗2t,

L(xixm+j) = Aij for i ∈ [m], j ∈ [n],

L ≥ 0 on M2t(S
+
A )
}
.

Moreover, define ξ+
∗ (A) by adding the constraint rank(M(L)) < ∞ to the program defining

ξ+
∞(A). It it easy to check that ξ+

t (A) ≤ ξ+
∞(A) ≤ ξ+

∗ (A) ≤ rank+(A) for t ∈ N.
Denote by ξ+

t,†(A) the strengthening of ξ+
t (A) where we add the positivity constraints

L(gu) ≥ 0 for g ∈ {1} ∪ S+
A and u ∈ [x]2t−deg(g). (22)

Note that these extra constraints can help for finite t, but are redundant for t ∈ {∞, ∗}.

5.1 Comparison to other bounds

As in the previous section, we compare our bounds to the bounds by Fawzi and Parrilo [FP16].
They introduce the following parameter τ+(A) as analogue of the bound τcp(A) for the nonneg-
ative rank:

τ+(A) = min
{
α : α ≥ 0, A ∈ α · conv

{
R ∈ Rm×n : 0 ≤ R ≤ A, rank(R) ≤ 1

}}
,

and the analogue τ sos
+ (A) of the bound τ sos

cp (A) for the nonnegative rank:

τ sos
+ (A) = inf

{
α : X ∈ Rmn×mn, α ∈ R,(

α vec(A)T

vec(A) X

)
� 0,

X(i,j),(i,j) ≤ A2
ij for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

X(i,j),(k,l) = X(i,l),(k,j) for 1 ≤ i < k ≤ m, 1 ≤ j < l ≤ n
}
.

First we give the analogue of Proposition 4.3, whose proof we omit since it is very similar.

Proposition 5.1. Let A ∈ Rm×n+ . For every t ∈ N∪ {∞, ∗} the optimum in ξ+
t (A) is attained,

and ξ+
t (A) → ξ+

∞(A) = ξ+
∗ (A). If ξ+

t (A) admits a flat optimal solution, then ξ+
t (A) = ξ+

∗ (A).
Moreover, ξ+

∞(A) = ξ+
∗ (A) is the minimum of L(1) over all conic combinations L of trace eval-

uations at elements of D(S+
A ) satisfying A = (L(xixm+j)).

Now we observe that the parameters ξ+
∞(A) and ξ+

∗ (A) coincide with τ+(A), so that we have
a sequence of semidefinite programs converging to τ+(A).
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Proposition 5.2. For any A ∈ Rm×n≥0 , we have ξ+
∞(A) = ξ+

∗ (A) = τ+(A).

Proof. The discussion at the beginning of Section 5 shows that for any rank one matrix R
satisfying 0 ≤ R ≤ A we may assume that R = uvT with (u, v) ∈ Rm+ ×Rn+ and ui, vj ≤

√
Amax

for i ∈ [m], j ∈ [n]. Hence, τ+(A) can be written as

min
{
α : α ≥ 0, A ∈ α · conv

{
uvT : u ∈

[
0,
√
Amax

]m
, v ∈

[
0,
√
Amax

]n
, uvT ≤ A

}}
= min

{
α : α ≥ 0, A ∈ α · conv

{
uvT : (u, v) ∈ D(S+

A )
}}
.

The equality ξ+
∞(A) = ξ+

∗ (A) = τ+(A) now follows from the reformulation of ξ+
∗ (A) in Propo-

sition 5.1 in terms of conic evaluations, after observing that for (u, v) ∈ Rm × Rn we have
(u, v) ∈ D(S+

A ) if and only if the matrix R = uvT satisfies 0 ≤ R ≤ A.

Analogous to the completely positive rank we have the following proposition. The proof
is similar to that of Proposition 4.2, considering now for M the principal submatrix of M2(L)
indexed by the monomials 1 and xixm+j for i ∈ [m] and j ∈ [n].

Proposition 5.3. If A is a nonnegative matrix, then ξ+
2,†(A) ≥ τ sos

+ (A).

In the remainder of this section we recall how τ+(A) and τ sos
+ (A) compare to other bounds

in the literature. These bounds can be divided into two categories: combinatorial lower bounds
and norm-based lower bounds. The following diagram from [FP16] summarizes how τ sos

+ (A)
and τ+(A) relate to the combinatorial lower bounds

τ sos
+ (A) ≤ τ+(A) ≤ rank+(A)

≤ ≤ ≤
fool(A) = ω(RG(A)) ≤ ϑ(RG(A)) ≤ χfrac(RG(A)) ≤ χ(RG(A)) = rankB(A).

Here RG(A) is the rectangular graph, with vertex set V = {(i, j) ∈ [m]× [n] : Aij > 0} and edge
set E = {((i, j), (k, l)) : AilAkj = 0}. The coloring number of RG(A) coincides with the well
known rectangle covering number (also denoted rankB(A)), which was used, e.g., in [FMP+15]
to show that the extension complexity of the correlation polytope is exponential. The clique
number of RG(A) is also known as the fooling set number (see, e.g., [FKPT13]). Observe that
the above combinatorial lower bounds only depend on the sparsity pattern of the matrix A, and
that they are all equal to one for a strictly positive matrix.

Fawzi and Parrilo [FP16] have furthermore shown that the bound τ+(A) is at least as good
as norm-based lower bounds:

τ+(A) = sup
N monotone and

positively homogeneous

N ∗(A)

N (A)
.

Here, a function N : Rm×n≥0 → R≥0 is positively homogeneous if N (λA) = λN (A) for all λ ≥ 0
and monotone if N (A) ≤ N (B) whenever A ≤ B, and N ∗(A) is defined as

N ∗(A) = max{L(A) : L : Rm×n → R linear and L(X) ≤ 1 for all X ∈ Rm×n≥0

with rank(X) ≤ 1 and N (X) ≤ 1}.

These bounds are called norm-based since norms often provide valid functions N . For example,
when N is the `∞-norm, Rothvoß [Rot14] has used the corresponding lower bound to show that
the matching polytope has exponential extension complexity.

When N is the Frobenius norm: N (A) =
√∑

i,j A
2
ij , the parameter N ∗(A) is known as

the nonnegative nuclear norm. It is denoted by ν+(A) in [FP15], they show that it satisfies
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rank+(A) ≥
(
ν+(A)
||A||F

)2
, and that ν+(A) admits the following reformulations:

ν+(A) = min
{∑

i

λi : A =
∑
i

λiuiv
T
i , (λi, ui, vi) ∈ R+ × Rm+ × Rn+, ||ui||2 = ||vi||2 = 1

}
(23)

= max
{
〈A,W 〉 : W ∈ Rm×n,

( I −W
−WT I

)
is copositive

}
, (24)

where the cone of copositive matrices is the dual of the cone of completely positive matrices.

Fawzi and Parrilo [FP15] use the copositive formulation (24) to provide bounds ν
[k]
+ (A) (k ≥ 0),

based on inner approximations of the copositive cone from [Par00], which converge to ν+(A)
from below. We now observe that by Theorem 2.8 the atomic formulation of ν+(A) from (23)
can be seen as a moment optimization problem:

ν+(A) = min

∫
S

1 dµ(x) s.t. Aij =

∫
V (S)

xixm+j dµ(x) for i ∈ [m], j ∈ [n].

where the optimization variable µ is required to be a Borel measure on the variety V (S), where

S = {
∑m

i=1 x
2
i − 1,

∑n
j=1 x

2
m+j − 1}.

(The same observation is made in [TS15] for the real nuclear norm of a symmetric 3-tensor
and in [Nie16] for symmetric odd-dimensional tensors.) For t ∈ N ∪ {∞}, let µt(A) denote the
parameter defined analogously to ξ+

t (A), where we replace the condition L ≥ 0 on M2t(S
+
A )

by L ≥ 0 on M2t({x1, . . . , xm+n}) and L = 0 on I2t(S), and let µ∗(A) be obtained by adding
the constraint rank(M(L)) < ∞ to µ∞(A). We have µt(A) → µ∞(A) = µ∗(A) = ν+(A) by
Theorem 2.8 and (a non-normalized analogue of) Theorem 2.9. One can show that µ1(A) with

the additional constraints L(u) ≥ 0 for all u ∈ [x]2, is at least as good as ν
[0]
+ (A). It is not clear

how the hierarchies µt(A) and ν
[k]
+ (A) compare in general.

5.2 Computational examples

We illustrate the performance of our approach by comparing our lower bounds ξ+
2,† and ξ+

3,† to
the lower bounds τ+ and τ sos

+ on the two examples considered in [FP16].

5.2.1 All nonnegative 2× 2 matrices

For A(α) =
(

1 1
1 α

)
, Fawzi and Parrilo [FP16] show that

τ+(A(α)) = 2− α and τ sos
+ (A(α)) =

2

1 + α
for all 0 ≤ α ≤ 1.

Since the parameters τ+(A) and τ sos
+ (A) are invariant under scaling and permuting rows and

columns of A, one can use the identity(
1 1
1 α

)
=

(
1 0
0 α

)(
1 1
1 1/α

)(
0 1
1 0

)
to see this describes the parameters for all nonnegative 2× 2 matrices. By using a semidefinite
programming solver for α = k/100, k ∈ [100], we see that ξ+

2 (A(α)) coincides with τ+(A(α)).

5.2.2 The nested rectangles problem

In this section we consider the nested rectangles problem as described in [FP16, Section 2.7.2]
(see also [MSvS03]), which asks for which a, b there exists a triangle T such thatR(a, b) ⊆ T ⊆ P ,
where R(a, b) = [−a, a]× [−b, b] and P = [−1, 1]2.
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The nonnegative rank relates not only to the extension complexity of a polytope [Yan91],
but also to extended formulations of nested pairs [BFPS15, GG12]. An extended formulation
of a pair of polytopes P1 ⊆ P2 ⊆ Rd is a (possibly) higher dimensional polytope K whose
projection π(K) is nested between P1 and P2. Suppose π(K) = {x ∈ Rd : y ∈ Rk+, (x, y) ∈ K}
and K = {(x, y) : Ex+Fy = g, y ∈ Rk+}, then k is the size of the extended formulation, and the
smallest such k is called the extension complexity of the pair (P1, P2). It is known (cf. [BFPS15,
Theorem 1]) that the extension complexity of the pair (P1, P2), where

P1 = conv({v1, . . . , vn}) and P2 = {x : aTi x ≤ bi for i ∈ [m]},

is equal to the nonnegative rank of the generalized slack matrix SP1,P2 ∈ Rm×n, defined by

(SP1,P2)ij = bj − aTj vi for i ∈ [m], j ∈ [n].

Any nonnegative matrix is the slack matrix of some nested pair of polytopes [GPT13, Lemma 4.1]
(see also [GG12]).

Applying this to the pair (R(a, b), P ), one immediately sees that there exists a polytope K
with at most three facets whose projection T = π(K) ⊆ R2 satisfies R(a, b) ⊆ T ⊆ P if and
only if the pair (R(a, b), P ) admits an extended formulation of size 3. For a, b > 0, the polytope
T has to be 2 dimensional, therefore K has to be at least 2 dimensional as well; it follows that
K and T have to be triangles. Hence there exists a triangle T such that R(a, b) ⊆ T ⊆ P if
and only if the nonnegative rank of the slack matrix S(a, b) := SR(a,b),P is equal to 3. One can
verify that

S(a, b) =


1− a 1 + a 1− b 1 + b
1 + a 1− a 1− b 1 + b
1 + a 1− a 1 + b 1− b
1− a 1 + a 1 + b 1− b

 .

Such a triangle exists if and only if (1 + a)(1 + b) ≤ 2 (see [FP16, Proposition 4] for a proof
sketch). To test the quality of their bound, Fawzi and Parrilo [FP16] compute τ sos

+ (S(a, b)) for
different values of a and b. In doing so they determine the region where τ sos

+ (S(a, b)) > 3. We
do the same for the bounds ξ+

1,†(S(a, b)), ξ+
2,†(S(a, b)) and ξ+

3,†(S(a, b)), see Figure 1. The results

show that ξ+
2,†(S(a, b)) strictly improves upon the bound τ sos

+ (S(a, b)), and that ξ+
3,†(S(a, b)) is

again a strict improvement over ξ+
2,†(S(a, b)).

6 Lower bounds on the positive semidefinite rank

The positive semidefinite rank can be seen as an asymmetric version of the completely positive
semidefinite rank. Hence, as was the case in the previous section for the nonnegative rank, we
need to select suitable factors in a minimal factorization in order to be able to bound their
maximum eigenvalues and obtain a localizing set of polynomials leading to an Archimedean
quadratic module.

For this we can follow, e.g., the approach in [LWdW17, Lemma 5] to rescale a factorization
and claim that, for any A ∈ Rm×n+ with psd-rankC(A) = d, there exists a factorization A =
(〈Xi, Xm+j〉) by matrices X1, . . . , Xm+n ∈ Hd+ such that

∑m
i=1Xi = I and Tr(Xm+j) =

∑
iAij

for all j ∈ [n]. Indeed, starting from any factorization Xi, Xm+j ∈ Hd+ of A, we may replace Xi

by X−1/2XiX
−1/2 and Xm+j by X1/2Xm+jX

1/2, where X :=
∑m

i=1Xi is positive definite (by
minimality of d). This argument shows that the set of polynomials

S psd
A =

{
xi − x2

i : i ∈ [m]
}
∪
{( m∑

i=1

Aij

)
xm+j − x2

m+j : j ∈ [n]
}
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Figure 1: The colored region corresponds to rank+(S(a, b)) = 4. The top
right region (black) corresponds to ξ+

1,†(S(a, b)) > 3, the two top right regions
(black and red) together correspond to τ sos

+ (S(a, b)) > 3, the three top right
regions (black, red and yellow) to ξ+

2,†(S(a, b)) > 3, and the four top right

regions (black, red, yellow, and green) to ξ+
3,†(S(a, b)) > 3.

is localizing for A; that is, there is at least one minimal factorization X of A such that g(X) � 0

for all polynomials g ∈ S psd
A . Moreover, for the same minimal factorization X of A we have

p(X)(1−
∑m

i=1Xi) = 0 for all p ∈ R〈x〉.
Given A ∈ Rm×n≥0 , for each t ∈ N ∪ {∞} we consider the semidefinite program

ξpsd
t (A) = min

{
L(1) : L ∈ R〈x1, . . . , xm+n〉∗2t,

L(xixm+j) = Aij for i ∈ [m], j ∈ [n],

L ≥ 0 on M2t(S
psd
A ),

L = 0 on I2t(1−
∑m

i=1 xi)
}
.

We additionally define ξpsd
∗ (A) by adding the constraint rank(M(L)) < ∞ to the program

defining ξpsd
∞ (A). By the above discussion it follows that the parameter ξpsd

∗ (A) is a lower
bound on psd-rankC(A) and we have

ξpsd
1 (A) ≤ . . . ≤ ξpsd

t (A) ≤ . . . ≤ ξpsd
∞ (A) ≤ ξpsd

∗ (A) ≤ psd-rankC(A).

Note that, in contrast to the previous bounds, the parameter ξpsd
t (A) is not invariant under

rescaling the rows of A or under taking the transpose of A (see the examples in Section 6.2.2).

It follows from the construction of S psd
A and Equation (7) that the quadratic moduleM(S psd

A )
is Archimedean, and hence the following analogue of Proposition 3.1 can be shown.

Proposition 6.1. Let A ∈ Rm×n+ . For each t ∈ N ∪ {∞}, the optimum in ξpsd
t (A) is attained,

and we have
lim
t→∞

ξpsd
t (A) = ξpsd

∞ (A).

Moreover, ξpsd
∞ (A) is equal to the smallest α ≥ 0 for which there exists a unital C∗-algebra A with

tracial state τ and X ∈ DA(S psd
A ) ∩ VA(1−

∑m
i=1 xi) such that A = α · (τ(XiXm+j))i∈[m],j∈[n].
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6.1 Comparison to other bounds

In [LWdW17] the following bound on the complex positive semidefinite rank was derived:

psd-rankC(A) ≥
m∑
i=1

maxj∈[n]
Aij∑
iAij

. (25)

If a feasible linear form L to ξpsd
t (A) satisfies the inequalities L(xi(

∑
iAij − xm+j)) ≥ 0 for all

i ∈ [m], j ∈ [n], then L(1) is at least the above lower bound. Indeed, the inequalities give

L(xi) ≥ maxj∈[n]
L(xixm+j)∑

iAij
= maxj∈[n]

Aij∑
iAij

.

and hence

L(1) =
m∑
i=1

L(xi) ≥
m∑
i=1

maxj∈[n]
Aij∑
iAij

.

We observe that the inequalities L(xi(
∑

iAij−xm+j)) ≥ 0 are of the form used in Lemma 3.9

and are indeed valid strengthenings of ξpsd
t (A). More importantly, as in Lemma 3.9, these

inequalities are satisfied by feasible linear forms to the programs ξpsd
∞ (A) and ξpsd

∗ (A). Hence,

ξpsd
∞ (A) and ξpsd

∗ (A) are at least as good as the lower bound (25).
In [LWdW17] two other fidelity based lower bounds on the psd-rank were defined; we do

not know how they compare to ξpsd
t (A).

6.2 Computational examples

In this section we apply our bounds to some (small) examples taken from the literature, namely
3× 3 circulant matrices and slack matrices of small polygons.

6.2.1 Nonnegative circulant matrices of size 3

We consider the nonnegative circulant matrices of size 3 which are, up to scaling, of the form

M(b, c) =

1 b c
c 1 b
b c 1

 with b, c ≥ 0.

If b = 1 = c, then rank(M(b, c)) = psd-rankR(M(b, c)) = psd-rankC(M(b, c)) = 1. Other-
wise we have rank(M(b, c)) ≥ 2, which implies psd-rankR(M(b, c)) ≥ psd-rankC(M(b, c)) ≥ 2.
In [FGP+15, Example 2.7] it is shown that

psd-rankR(M(b, c)) ≤ 2 ⇐⇒ 1 + b2 + c2 ≤ 2(b+ c+ bc).

Hence, if b and c do not satisfy the above relation then psd-rankR(M(b, c)) = 3.
To see how good our lower bounds are for this example, we use a semidefinite programming

solver to compute ξpsd
2 (M(b, c)) for (b, c) ∈ [0, 4]2 (with stepsize 0.01). In Figure 2 we see that

the bound ξpsd
2 (M(b, c)) permits to certify psd-rankR(M(b, c)) = psd-rankC(M(b, c)) = 3 for

most values (b, c) where psd-rankR(M(b, c)) = 3.

6.2.2 Polygons

Here we consider the slack matrices of two polygons in the plane, where the bounds are sharp
(after rounding) and illustrate the dependence on scaling the rows or taking the transpose.

34



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

b

c

Figure 2: The colored region corresponds to the values (b, c) for which
psd-rankR(M(b, c)) = 3; the outer region (yellow) shows the values of (b, c)

for which ξpsd
2 (M(b, c)) > 2.

We consider the quadrilateral Q whose vertices are (0, 0), (0, 1), (1, 0), (2, 2), and the regular
hexagon H, whose slack matrices are given by

SQ =


0 0 2 2
1 0 0 3
0 1 3 0
2 2 0 0

 , SH =



0 1 2 2 1 0
0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0

 .

Our lower bounds on the psd-rankC are not invariant under taking the transpose, indeed numeri-
cally we have ξpsd

2 (SQ) ≈ 2.266 and ξpsd
2 (ST

Q) ≈ 2.5. The slack matrix SQ has psd-rankR(SQ) = 3
(a corollary of [GRT13, Theorem 4.3]) and therefore both bounds certify psd-rankC(SQ) = 3 =
psd-rankR(SQ).

Secondly, our bounds are not invariant under rescaling the rows of a nonnegative matrix.
Numerically we have ξpsd

2 (SH) ≈ 1.99 while ξpsd
2 (DSH) ≈ 2.12, where D = Diag(2, 2, 1, 1, 1, 1).

The bound ξpsd
2 (DSH) is in fact tight (after rounding) for the complex positive semidefinite

rank of DSH and hence of SH : in [GGS16] it is shown that psd-rankC(SH) = 3.

7 Discussion and future work

In this work we provide a unified approach for the four matrix factorizations obtained by con-
sidering (a)symmetric factorizations by nonnegative vectors and positive semidefinite matrices.
Our methods can be extended to the nonnegative tensor rank: The smallest integer d for which
a k-tensor A ∈ Rn1×···×nk

+ can be written as A =
∑d

l=1 u1,l ⊗ · · · ⊗ uk,l for nonnegative vectors
uj,l ∈ Rnj+ . The approach from Section 5 for rank+ can be extended to obtain a hierarchy
of lower bounds on the nonnegative tensor rank. For instance, if A is a 3-tensor, the anal-
ogous bound ξ+

t (A) is obtained by minimizing L(1) over L ∈ R[x1, . . . , xn1+n2+n3 ]∗ such that
L(xi1xn1+i2xn1+n2+i3) = Ai1i2i3 (for i1 ∈ [n1], i2 ∈ [n2], i3 ∈ [n3]), and using as localizing polyno-
mials in S+

A the polynomials 3
√
Amaxxi−x2

i andAi1i2i3−xi1xn1+i2xn1+n2+i3 . As in the matrix case
one can compare to the bounds τ+(A) and τ sos

+ (A) from [FP16]. One can show ξ+
∗ (A) = τ+(A),
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and, by adding the conditions L(xi1xn1+i2xn1+n2+i3(Ai1i2i3−xi1xn1+i2xn1+n2+i3)) ≥ 0 to ξ+
3 (A),

one can show ξ+
3,†(A) ≥ τ sos

+ (A).

Testing membership in the completely positive cone and the completely positive semidefinite
cone is another important problem, to which our hierarchies can also be applied. It follows from
the proof of Proposition 4.3 that if A is not completely positive then ξcp

t (A) is infeasible for all t
large enough (which is analogous to an earlier result in [Nie14]). In the noncommutative setting

the situation is more complicated: If ξcpsd
∗ (A) is feasible, then A ∈ CSn+, and if A 6∈ CSnvN+,

then ξcpsd
t (A) is infeasible for all t large enough (Propositions 3.1 and 3.2). Here CSvN+ is the

cone defined in [BLP17] consisting of the matrices admitting a factorization in a von Neumann
algebra with a trace. By Lemma 2.10, CSvN+ can equivalently be characterized as the set of
matrices of the form α (τ(aiaj)) for some C∗-algebra A with tracial state τ , positive elements
a1, . . . , an ∈ A and α ∈ R+.

Our lower bounds are on the complex version of the (completely) positive semidefinite rank.
As far as we are aware, the existing lower bounds (except for the dimension counting rank lower
bound) are also on the complex (completely) positive semidefinite rank. It would be interesting
to find a lower bound on the real (completely) positive semidefinite rank that can go beyond
the complex (completely) positive semidefinite rank.

We conclude with some open questions regarding applications of lower bounds on matrix
factorization ranks. First, as was shown in [PSVW16, GdLL17a, PV17], completely positive
semidefinite matrices whose cpsd-rankC is larger than their size do exist, but currently we do
not know how to construct small examples for which this holds. Hence, a concrete question:
Does there exist a 5× 5 completely positive semidefinite matrix whose cpsd-rankC is at least 6?
Second, as we mentioned before, the asymmetric setting corresponds to (semidefinite) extension
complexity of polytopes. Rothvoß’ result [Rot14] (indirectly) shows that the parameter ξ+

∞ is
exponential (in the number of nodes of the graph) for the slack matrix of the matching polytope.
Can this result also be shown directly using the dual formulation of ξ+

∞, that is, by a sum-of-
squares certificate? If so, could one extend the argument to the noncommutative setting (which
would show a lower bound on the semidefinite extension complexity)?
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A Proofs

Proofs for Section 2.1

Theorem 2.1. Let S ⊆ SymR〈x〉 and T ⊆ R〈x〉 with M(S) + I(T ) Archimedean. Given a
linear form L ∈ R〈x〉∗, the following are equivalent:

(1) L is symmetric, tracial, nonnegative on M(S), zero on I(T ), and L(1) = 1;

(2) there is a unital C∗-algebra A with tracial state τ and X ∈ DA(S) ∩ VA(T ) with

L(p) = τ(p(X)) for all p ∈ R〈x〉. (3)

Proof. We first prove the easy direction (2)⇒ (1): We have

L(p∗) = τ(p∗(X)) = τ(p(X)∗) = τ(p(X)) = L(p) = L(p),
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where we use that τ is Hermitian and X∗i = Xi for i ∈ [n]. Moreover, L is tracial since τ is
tracial. In addition, for g ∈ S ∪ {1} and p ∈ R〈x〉 we have

L(p∗gp) = τ(p∗(X)g(X)p(X)) = τ(p(X)∗g(X)p(X)) ≥ 0,

since g(X) is positive in A as X ∈ DA(S) and τ is positive. Similarly L(hq) = τ(h(X)q(X)) = 0
for all h ∈ T , since X ∈ VA(T).

Now we show (1) ⇒ (2) by applying a GNS construction. Consider the quotient vector
space R〈x〉/N(L), and denote the class of p in R〈x〉/N(L) by p. We can equip this quotient
with the inner product 〈p, q〉 = L(p∗q) for p, q ∈ R〈x〉, so that the completion H of R〈x〉/N(L)
is a separable Hilbert space. As N(L) is a left ideal in R〈x〉, the operator

Xi : R〈x〉/N(L)→ R〈x〉/N(L), p 7→ xip (26)

is well defined. We have

〈Xi p, q〉 = L((xip)
∗q) = L(p∗xiq) = 〈p,Xiq〉 for all p, q ∈ R〈x〉,

so the Xi are self-adjoint. Since g ∈ S∪{1} is symmetric and 〈p, g(X)p〉 = 〈p, gp〉 = L(p∗gp) ≥ 0
for all p we have g(X) � 0. By the Archimedean condition, there exists an R > 0 such that
R−

∑n
i=1 x

2
i ∈M(S) + I(T ). Using R− x2

i = (R−
∑n

j=1 x
2
j ) +

∑
j 6=i x

2
j ∈M(S) + I(T ) we get

〈Xip,Xip〉 = L(p∗x2
i p) ≤ R · L(p∗p) = R〈p, p〉 for all p ∈ R〈x〉.

So each Xi extends to a bounded self-adjoint operator, also denoted Xi, on the Hilbert space
H such that g(X) is positive for all g ∈ S ∪ {1}. Moreover, we have 〈f, h(X)1〉 = L(f∗h) = 0
for all f ∈ R〈x〉 and h ∈ T .

The operators Xi ∈ B(H) extend to self-adjoint operators in B(C ⊗R H), where C ⊗R H
is the complexification of H. Let A be the unital C∗-algebra obtained by taking the operator
norm closure of R〈X〉 ⊆ B(C⊗R H). It follows that X ∈ DA(S) ∩ VA(T ).

Define the state τ on A by τ(a) = 〈1, a1〉 for a ∈ A. For all p, q ∈ R〈x〉 we have

τ(p(X)q(X)) = 〈1, p(X)q(X)1〉 = 〈1, pq〉 = L(pq), (27)

so that the restriction of τ to R〈X〉 is tracial. Since R〈X〉 is dense in A in the operator norm,
this implies τ is tracial.

To conclude the proof, observe that (3) follows from (27) by taking q = 1.

Theorem 2.2. For S ⊆ SymR〈x〉, T ⊆ R〈x〉, and L ∈ R〈x〉∗, the following are equivalent:

(1) L is a symmetric, tracial, linear form with L(1) = 1 that is nonnegative on M(S), zero
on I(T ), and has rank(M(L)) <∞;

(2) there is a finite dimensional C∗-algebra A, a tracial state τ , and X ∈ DA(S) ∩ VA(T )
satisfying equation (3);

(3) L is a convex combination of normalized trace evaluations at points in D(S) ∩ V(T ).

Proof. ((1) ⇒ (2)) Here we can follow the proof of Theorem 2.1, with the extra observation
that the condition rank(M(L)) <∞ implies that the quotient space R〈x〉/N(L) is finite dimen-
sional. Since R〈x〉/N(L) is finite dimensional the multiplication operators are bounded, and
the constructed C∗-algebra A is finite dimensional.

((2) ⇒ (3)) By Artin-Wedderburn theory we have the ∗-isomorphism

ϕ : A →
M⊕
m=1

Cdm×dm .
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Define the ∗-homomorphisms ϕm : A → Cdm×dm by ϕ = ⊕mϕm. The map Cdm×dm → C
defined by X 7→ τ(ϕ−1

m (X)) is a positive tracial linear form, and hence a nonnegative multiple
λmtr(·) of the normalized matrix trace (since, for a full matrix algebra, the normalized trace
is the unique tracial state). Then τ(a) =

∑
m λm tr(ϕm(a)) for nonnegative scalars λm with∑

m λm = L(1) = 1. By defining the matrices Xm
i = ϕm(Xi) for m ∈ [M ], we get

L(p) = τ(p(X1, . . . , Xn)) =
M∑
m=1

λm tr(p(Xm
1 , . . . , X

m
n )) for all p ∈ R〈x〉.

Since ϕm is a ∗-homomorphism we have g(Xm
1 , . . . , X

m
n ) � 0 for all g ∈ S ∪ {1} and also

h(Xm
1 , . . . , X

m
n ) = 0 for all h ∈ T , which shows (Xm

1 , . . . , X
m
n ) ∈ D(S) ∩ V(T ).

((3) ⇒ (1)) If L is a conic combination of trace evaluations at elements from D(S) ∩ V(T ),
then L is symmetric, tracial, nonnegative onM(S), zero on I(R), and satisfies rank(M(L)) <∞
because the moment matrix of any trace evaluation has finite rank.

Theorem 2.3. Let 1 ≤ δ ≤ t < ∞, S ⊆ SymR〈x〉2δ, and T ⊆ R〈x〉2δ. Suppose L ∈ R〈x〉∗2t
is symmetric, tracial, δ-flat, nonnegative on M2t(S), and zero on I2t(T ). Then L extends to a
symmetric, tracial, linear form on R〈x〉 that is nonnegative on M(S), zero on I(T ), and whose
moment matrix has finite rank.

Proof. Let W ⊆ 〈x〉t−δ index a maximum nonsingular submatrix of Mt−δ(L), and let span(W )
be the linear space spanned by W . We have the vector space direct sum

R〈x〉t = span(W )⊕Nt(L). (28)

That is, for each u ∈ 〈x〉t there exists a unique ru ∈ span(W ) such that u− ru ∈ Nt(L).
We first construct the (unique) symmetric flat extension L̂ ∈ R〈x〉2t+2 of L. For this we set

L̂(p) = L(p) for deg(p) ≤ 2t, and we set

L̂(u∗xiv) = L(u∗xirv) and L̂((xiu)∗xjv) = L((xiru)∗xjrv)

for all i, j ∈ [n] and u, v ∈ 〈x〉 with |u| = |v| = t. One can verify that L̂ is symmetric and
satisfies xi(u−ru) ∈ Nt+1(L̂) for all i ∈ [n] and u ∈ R〈x〉t, from which it follows that L̂ is 2-flat.

We also have (u− ru)xi ∈ Nt+1(L̂) for all i ∈ [n] and u ∈ R〈x〉t: Since L̂ is 2-flat, we have
(u−ru)xi ∈ Nt+1(L̂) if and only if L̂(p(u−ru)xi) = 0 for all p ∈ R〈x〉t−1. By using deg(xip) ≤ t,
L is tracial, and u− ru ∈ Nt(L), we get L̂(p(u− ru)xi) = L(p(u− ru)xi) = L(xip(u− ru)) = 0.

By consecutively using (v − rv)xj ∈ Nt+1(L̂), symmetry of L̂, xi(u − ru) ∈ Nt+1(L̂), and
again symmetry of L̂, we see that

L̂((xiu)∗vxj) = L̂((xiu)∗rvxj) = L̂((rvxj)
∗xiu) = L̂((rvxj)

∗xiru) = L̂((xiru)∗rvxj), (29)

and in an analogous way one can show

L̂((uxi)
∗xjv) = L̂((ruxi)

∗xjrv). (30)

We can now show that L̂ is tracial. We do this by showing that L̂(wxj) = L̂(xjw) for all w
with deg(w) ≤ 2t + 1. Notice that when deg(w) ≤ 2t − 1 the statement follows from the fact
that L̂ is an extension of L. Suppose w = u∗v with deg(u) = t + 1 and deg(v) ≤ t. We write
u = xiu

′, and we let ru′ , rv ∈ R〈x〉t−1 be such that u′ − ru′ , v − rv ∈ Nt(L). We then have

L̂(wxj) = L̂(u∗vxj) = L̂((xiu
′)∗vxj)

= L̂((xiru′)
∗rvxj) by (29)

= L((xiru′)
∗rvxj) since deg(xiru′rvxj) ≤ 2t

= L((ru′xj)
∗xirv) since L is tracial

= L̂((ru′xj)
∗xirv) since deg((ru′xj)

∗xirv) ≤ 2t

= L̂((u′xj)
∗xiv) by (30)

= L̂(xjw).
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It follows L̂ is a symmetric tracial flat extension of L, and rank(M(L̂)) = rank(M(L)).
Next, we iterate the above procedure to extend L to a symmetric tracial linear functional

L̂ ∈ R〈x〉∗. It remains to show that L̂ is nonnegative on M(S) and zero on I(T ). For this we
make two observations:

(i) I(Nt(L)) ⊆ N(L̂).

(ii) R〈x〉 = span(W )⊕ I(Nt(L)).

For (i) we use the (easy to check) fact that Nt(L) = span({u−ru : u ∈ 〈x〉t}). Then it suffices to
show that w(u−ru) ∈ N(L̂) for all w ∈ 〈x〉, which can be done using induction on |w|. From (i)
one easily deduces that span(W )∩N(L̂) = {0}, so we have the direct sum span(W )⊕I(Nt(L)).
The claim (ii) follows using induction on the length of w ∈ 〈x〉: The base case w ∈ 〈x〉t follows
from (28). Let w = xiv ∈ 〈x〉 and assume v ∈ span(W ) ⊕ I(Nt(L)), that is, v = rv + qv
where rv ∈ span(W ) and qv ∈ I(Nt(L)). We have xiv = xirv + xiqv so it suffices to show
xirv, xiqv ∈ span(W )⊕ I(Nt(L)). Clearly xiqv ∈ I(Nt(L)), since qv ∈ I(Nt(L)). Also, observe
that xirv ∈ R〈x〉t and therefore xirv ∈ span(W )⊕ I(Nt(L)) by (28).

We conclude the proof by showing that L̂ is nonnegative on M(S) and zero on I(T ). Let
g ∈ M(S), h ∈ I(T ), and p ∈ R〈x〉. For p ∈ R〈x〉 we extend the definition of rp so that
rp ∈ span(W ) and p− rp ∈ I(Nt(L)), which is possible by (ii). Then,

L̂(p∗gp)
(i)
= L̂(p∗grp) = L̂(r∗pgp)

(i)
= L̂(r∗pgrp) = L(r∗pgrp) ≥ 0,

L̂(p∗h) = L̂(h∗p)
(i)
= L̂(h∗rp) = L̂(rph) = L(rph) = 0,

where we use deg(r∗pgrp) ≤ 2(t− δ) + 2δ = 2t and deg(rph) ≤ (t− δ) + 2δ ≤ 2t.

Proofs for Section 2.2

Theorem 2.5. Let S, T ⊆ R[x] with M(S) + I(T ) Archimedean. For L ∈ R[x]∗, the following
are equivalent:

(1) L is nonnegative on M(S), zero on I(T ), and L(1) = 1;

(2) there exists a unital commutative C∗-algebra A with a state τ and X ∈ DA(S) ∩ VA(T )
such that L(p) = τ(p(X)) for all p ∈ R[x];

(3) there is a probability measure µ on D(S) ∩ V (T ) such that

L(p) =

∫
D(S)∩V (T )

p(x) dµ(x) for all p ∈ R[x].

Proof. ((1)⇒ (2)) This is the commutative analogue of the implication (1)⇒ (2) in Theorem 2.1
(observing in addition that the operators Xi in (26) pairwise commute so that the constructed
C∗-algebra A is commutative).

((2)⇒ (3)) Let Â denote the set of unital ∗-homomorphisms A → C, known as the spectrum
of A. We equip Â with the weak-∗ topology, so that it is compact as a result of A being unital
(see, e.g., [Bla06, II.2.1.4]). The Gelfand representation is the ∗-isomorphism

Γ: A → C(Â), Γ(a)(φ) = φ(a) for a ∈ A, φ ∈ Â,

where C(Â) is the set of complex-valued continuous functions on Â. Since Γ is an isomorphism,
the state τ on A induces a state τ ′ on C(Â) defined by τ ′(Γ(a)) = τ(a) for a ∈ A. By the Riesz
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representation theorem (see, e.g., [Rud87, Theorem 2.14]) there is a Radon measure ν on Â
such that

τ ′(Γ(a)) =

∫
Â

Γ(a)(φ) dν(φ) for all a ∈ A.

We then have

L(p) = τ(p(X)) = τ ′(Γ(p(X))) =

∫
Â

Γ(p(X))(φ) dν(φ) =

∫
Â
φ(p(X)) dν(φ)

=

∫
Â
p(φ(X1), . . . , φ(Xn)) dν(φ) =

∫
Â
p(f(φ)) dν(φ) =

∫
Rn
p(x) dµ(x),

where f : Â → Rn is defined by φ 7→ (φ(X1), . . . , φ(Xn)), and where µ = f∗ν is the pushforward
measure of ν by f ; that is, µ(S) = ν(f−1(S)) for measurable S ⊆ Rn.

Since X ∈ DA(S), we have g(X) � 0 for all g ∈ S, hence Γ(g(X)) is a positive ele-
ment of C(Â), implying g(φ(X1), . . . , φ(Xn)) = φ(g(X)) = Γ(g(X))(φ) ≥ 0. Similarly we see
h(φ(X1), . . . , φ(Xn)) = 0 for all h ∈ T . So, the range of f is contained in D(S) ∩ V (T ), µ is a
probability measure on D(S) ∩ V (T ) since L(1) = 1, and we have

L(p) =

∫
D(S)∩V (T )

p(x) dµ(x) for all p ∈ R[x].

((3) ⇒ (1)) This is immediate.

Note that the more common proof for the implication (1) ⇒ (3) in Theorem 2.5 relies
on Putinar’s Positivstellensatz [Put93]: if L satisfies (1) then L(p) ≥ 0 for all polynomials p
nonnegative on D(S) ∩ V (T ) (since p + ε ∈ M(S) + I(T ) for any ε > 0), and thus L has a
representing measure µ as in (3) by the Riesz-Haviland theorem [Hav36].

Theorem 2.6. For S ⊆ R[x], T ⊆ R[x], and L ∈ R[x]∗, the following are equivalent:

(1) L is nonnegative on M(S), zero on I(T ), has rank(M(L)) <∞, and L(1) = 1;

(2) there is a finite dimensional commutative C∗-algebra A, a state τ , and X ∈ DA(S)∩VA(T )
satisfying equation (3);

(3) L is a convex combination of evaluations at points in D(S) ∩ V (T ).

Proof. ((1) ⇒ (2)) We indicate how to derive this claim from its noncommutative analogue.
For this denote the commutative version of p ∈ R〈x〉 by pc ∈ R[x]. For any g ∈ S and h ∈ T ,
select symmetric polynomials g′, h′ ∈ R〈x〉 with (g′)c = g and (h′)c = h, and set

S′ =
{
g′ : g ∈ S

}
and T ′ =

{
h′ : h ∈ T

}
∪
{
xixj − xjxi ∈ R〈x〉 : i, j ∈ [n], i 6= j

}
.

Define the linear form L′ ∈ R〈x〉∗ by L′(p) = L(pc) for p ∈ R〈x〉. Then L′ is symmetric, tracial,
nonnegative on M(S′), zero on I(T ′), and satisfies rankM(L′) = rankM(L) < ∞. Following
the proof of the implication (1) ⇒ (2) in Theorem 2.1, we see that the operators X1, . . . , Xn

pairwise commute (since X ∈ VA(T ′) and T ′ contains all xixj − xjxi) and thus the constructed
C∗-algebra A is finite dimensional and commutative.

((2) ⇒ (3)) Here we follow the proof of this implication in Theorem 2.2 and observe that
since A is finite dimensional and commutative, it is ∗-isomorphic to an algebra of diagonal
matrices (dm = 1 for all m ∈ [M ]), which gives directly the desired result.

((3) ⇒ (1)) is easy.

Theorem 2.7. Let 1 ≤ δ ≤ t < ∞ and S, T ⊆ R[x]2δ. If L ∈ R[x]∗2t is δ-flat, nonnegative
on M2t(S), and zero on I2t(T ), then L extends to a conic combination of evaluation maps at
points in D(S) ∩ V (T ).
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Proof. Here too we derive the result from its noncommutative analogue in Corollary 2.4. As in
the above proof for the implication (1) =⇒ (2) in Theorem 2.6, define the sets S′, T ′ ⊆ R〈x〉
and the linear form L′ ∈ R〈x〉∗2t by L′(p) = L(pc) for p ∈ R〈x〉2t. Then L′ is symmetric, tracial,
nonnegative onM2t(S

′), zero on I2t(T
′), and δ-flat. By Corollary 2.4, L′ is a conic combination

of trace evaluation maps at elements of D(S′) ∩ V(T ′). It suffices now to observe that such a
trace evaluation LX is a conic combination of (scalar) evaluations at elements of D(S) ∩ V (T ).
Indeed, as X ∈ V(T ′), the matrices X1, . . . , Xn pairwise commute and thus can be assumed to
be diagonal. Since X ∈ D(S′) ∩ V(T ′), we have g(X) � 0 for g′ ∈ S′ and h′(X) = 0 for h′ ∈ T ′.
This implies g((X1)jj , . . . , (Xn)jj) ≥ 0 and h((X1)jj , . . . , (Xn)jj) = 0 for all g ∈ S, h ∈ T , and
j ∈ [d]. Thus LX =

∑
j Lrj , where rj = ((X1)jj , . . . , (Xn)jj) ∈ D(S) ∩ V (T ).

Theorem 2.8. Let S, T ⊆ R[x] such that M(S) + I(T ) is Archimedean. If L ∈ R[x]∗ is
nonnegative on M(S) and zero on I(T ), then for any integer k ∈ N the restriction of L to
R[x]k extends to a conic combination of evaluations at points in D(S) ∩ V (T ).

Proof. By Theorem 2.5 there exists a probability measure µ on D(S) such that

L(p) = L(1)

∫
D(S)∩V (T )

p(x) dµ(x) for all p ∈ R[x].

A general version of Tchakaloff’s theorem, as explained in [BT06], shows there exist r ∈ N,
scalars λ1, . . . , λr > 0 and points x1, . . . , xr ∈ D(S) such that∫

D(S)∩V (T )
p(x) dµ(x) =

r∑
i=1

λip(xi) for all p ∈ R[x]k,

which shows that the restriction of L to R[x]k extends to a conic combination of evaluations at
points in D(S).

Proofs for Section 2.3

We start with the next lemma, which we then use for the proof of Theorem 2.11 (the noncom-
mutative case), from which we then derive Theorem 2.9 (the commutative case).

Lemma 2.12. Let S ⊆ SymR〈x〉 and R > 0 such that R − (x2
1 + · · · + x2

n) ∈ M2(S). If
Lt ∈ R〈x〉∗2t is nonnegative on M2t(S), then |Lt(w)| ≤ R|w|/2Lt(1) for all w ∈ 〈x〉2t. If in
addition suptLt(1) <∞, then (Lt) has a pointwise converging subsequence in R〈x〉∗.

Proof. We first use induction on 0 ≤ |w| ≤ t to show that Lt(w
∗w) ≤ R|w|Lt(1) for all w ∈ 〈x〉t.

Indeed, if Lt(w
∗w) ≤ R|w|Lt(1), then

Lt((xiw)∗xiw) = Lt(w
∗(x2

i −R)w) +R · Lt(w∗w) ≤ R ·R|w|Lt(1) = R|xiw|Lt(1),

where we use that Lt(w
∗(x2

i − R)w) ≤ 0 since w∗(R − x2
i )w ∈ M2t(S). Next we write any

w ∈ 〈x〉2t as w = w∗1w2 with w1, w2 ∈ 〈x〉t and use the positive semidefiniteness of the principal
submatrix of Mt(Lt) indexed by {w1, w2} to get

Lt(w)2 = Lt(w
∗
1w2)2 ≤ Lt(w∗1w1)Lt(w

∗
2w2) ≤ R|w1|+|w2|Lt(1)2 = R|w|Lt(1)2.

This shows the first claim.
Suppose c := supt Lt(1) < ∞. Then, for each t, extending Lt ∈ R〈x〉∗2t to R〈x〉∗ by setting

Lt(w) = 0 for words |w| > 2t, we have that the vector (Lt(w)/(R|w|/2c))w∈〈x〉 lies in the
supremum norm unit ball of R〈x〉, which is compact by the Banach–Alaoglu theorem. It follows
that the sequence (Lt) has a converging subsequence.
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Theorem 2.11. Let 1 ≤ δ ≤ t <∞ and S ∪ {f} ⊆ SymR〈x〉2δ with D(S) 6= ∅.

(i) If M(S) is Archimedean, then f trt → f tr
∞ as t → ∞, and the optimal values in f tr∞ and

f tr
II1

are attained and equal.

(ii) If f trt has an optimal solution L that is δ-flat, then L is a convex combination of normalized
trace evaluations at matrix tuples in D(S), and f trt = f tr∞ = f tr

II1
= f tr
∗ .

Proof. We first show (i). As M(S) is Archimedean, R −
∑n

i=1 x
2
i ∈ M(S) for some R > 0.

To avoid technical details and simplify notation we will make the stronger assumption that the
polynomial R−

∑n
i=1 x

2
i belongs to M2(S), see, e.g., [PNA10] for the general case.

Since the bounds f tr
t are monotone nondecreasing in t and upper bounded by f tr

∞, the limit
limt→∞ f

tr
t exists and it is at most f tr

∞. If L is feasible for f tr
t , then by Lemma 2.12 we have

|L(w)| ≤ R|w|/2 for all w ∈ 〈x〉2t. Hence the feasible region of f tr
t is compact and, since it is

non-empty, there exists an optimal solution Lt ∈ R〈x〉∗2t to the program defining f tr
t .

By Lemma 2.12, the sequence (Lt) has a pointwise converging subsequence. Let L ∈ R〈x〉∗
be the pointwise limit. One can easily check that L is feasible for f tr

∞. Hence L is optimal for
f tr
∞ and thus f tr

t = Lt(f)→ L(f) = f tr
∞.

Next, since L is symmetric, tracial, and nonnegative onM(S), we can apply Theorem 2.1 to
obtain a feasible solution (A, τ,X) to f tr

II1
satisfying (3) with objective value L(f). This shows

f tr
∞ = f tr

II1
and that the optima are attained in f tr

∞ and f tr
II1

.
Finally, part (ii) is derived as follows. If L is an optimal solution of f tr

t that is δ-flat,
then, by Corollary 2.4, it has an extension L̂ ∈ R〈x〉∗ that is a conic combination of trace
evaluations at elements of D(S). This shows f tr

∗ ≤ L̂(f) = L(f), and thus the chain of equalities
f tr
t = f tr

∞ = f tr
∗ = f tr

Π1
holds.

We now derive the commutative analogue of the above theorem.

Theorem 2.9. Let 1 ≤ δ ≤ t <∞ and S ∪ {f} ⊆ R[x]2δ with D(S) 6= ∅.

(i) If M(S) is Archimedean, then ft → f∞ as t → ∞, and the optimal values in f∞ and f∗
are attained and f∞ = f∗.

(ii) If ft admits an optimal solution L that is δ-flat, then L is a convex combination of eval-
uation maps at global minimizers of f in D(S), and ft = f∞ = f∗.

Proof. (i) By repeating the first part of the proof of Theorem 2.11 in the commutative setting
we see that ft → f∞ and that the optimum is attained in f∞. Let L be optimal for f∞ and let
k be greater than deg(f) and deg(g) for g ∈ S. By Theorem 2.8, the restriction of L to R[x]k
extends to a conic combination of evaluations at points in D(S). It follows that this extension
if feasible for f∗ with the same objective value, which shows f∞ = f∗.

(ii) This follows in the same way as the proof of Theorem 2.11(ii), where, instead of using
Corollary 2.4, we now use its commutative analogue, Theorem 2.7.
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[NPA12] M. Navascués, S. Pironio, and A. Aćın. SDP relaxations for non-commutative polynomial

optimization. In M. F. Anjos and J. B. Lasserre, editors, Handbook on Semidefinite, Conic
and Polynomial Optimization, pages 601–634. Springer, 2012.

[Par00] P. A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in
Robustness and Optimization. PhD thesis, Caltech, 2000.

44

quantuminfo.quantumlah.org/memberpages/laura/corr.pdf
quantuminfo.quantumlah.org/memberpages/laura/corr.pdf
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