169 research outputs found

    Minimal counterexamples and discharging method

    Full text link
    Recently, the author found that there is a common mistake in some papers by using minimal counterexample and discharging method. We first discuss how the mistake is generated, and give a method to fix the mistake. As an illustration, we consider total coloring of planar or toroidal graphs, and show that: if GG is a planar or toroidal graph with maximum degree at most κ−1\kappa - 1, where κ≥11\kappa \geq 11, then the total chromatic number is at most κ\kappa.Comment: 8 pages. Preliminary version, comments are welcom

    Coloring non-crossing strings

    Full text link
    For a family of geometric objects in the plane F={S1,…,Sn}\mathcal{F}=\{S_1,\ldots,S_n\}, define χ(F)\chi(\mathcal{F}) as the least integer ℓ\ell such that the elements of F\mathcal{F} can be colored with ℓ\ell colors, in such a way that any two intersecting objects have distinct colors. When F\mathcal{F} is a set of pseudo-disks that may only intersect on their boundaries, and such that any point of the plane is contained in at most kk pseudo-disks, it can be proven that χ(F)≤3k/2+o(k)\chi(\mathcal{F})\le 3k/2 + o(k) since the problem is equivalent to cyclic coloring of plane graphs. In this paper, we study the same problem when pseudo-disks are replaced by a family F\mathcal{F} of pseudo-segments (a.k.a. strings) that do not cross. In other words, any two strings of F\mathcal{F} are only allowed to "touch" each other. Such a family is said to be kk-touching if no point of the plane is contained in more than kk elements of F\mathcal{F}. We give bounds on χ(F)\chi(\mathcal{F}) as a function of kk, and in particular we show that kk-touching segments can be colored with k+5k+5 colors. This partially answers a question of Hlin\v{e}n\'y (1998) on the chromatic number of contact systems of strings.Comment: 19 pages. A preliminary version of this work appeared in the proceedings of EuroComb'09 under the title "Coloring a set of touching strings

    A note on total and list edge-colouring of graphs of tree-width 3

    Full text link
    It is shown that Halin graphs are Δ\Delta-edge-choosable and that graphs of tree-width 3 are (Δ+1)(\Delta+1)-edge-choosable and (Δ+2)(\Delta +2)-total-colourable.Comment: arXiv admin note: substantial text overlap with arXiv:1504.0212

    Interval total colorings of graphs

    Full text link
    A total coloring of a graph GG is a coloring of its vertices and edges such that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. An \emph{interval total tt-coloring} of a graph GG is a total coloring of GG with colors 1,2,.Ë™.,t1,2,\...,t such that at least one vertex or edge of GG is colored by ii, i=1,2,.Ë™.,ti=1,2,\...,t, and the edges incident to each vertex vv together with vv are colored by dG(v)+1d_{G}(v)+1 consecutive colors, where dG(v)d_{G}(v) is the degree of the vertex vv in GG. In this paper we investigate some properties of interval total colorings. We also determine exact values of the least and the greatest possible number of colors in such colorings for some classes of graphs.Comment: 23 pages, 1 figur

    Total coloring of 1-toroidal graphs of maximum degree at least 11 and no adjacent triangles

    Full text link
    A {\em total coloring} of a graph GG is an assignment of colors to the vertices and the edges of GG such that every pair of adjacent/incident elements receive distinct colors. The {\em total chromatic number} of a graph GG, denoted by \chiup''(G), is the minimum number of colors in a total coloring of GG. The well-known Total Coloring Conjecture (TCC) says that every graph with maximum degree Δ\Delta admits a total coloring with at most Δ+2\Delta + 2 colors. A graph is {\em 11-toroidal} if it can be drawn in torus such that every edge crosses at most one other edge. In this paper, we investigate the total coloring of 11-toroidal graphs, and prove that the TCC holds for the 11-toroidal graphs with maximum degree at least~1111 and some restrictions on the triangles. Consequently, if GG is a 11-toroidal graph with maximum degree Δ\Delta at least~1111 and without adjacent triangles, then GG admits a total coloring with at most Δ+2\Delta + 2 colors.Comment: 10 page

    Complexity of colouring problems restricted to unichord-free and \{square,unichord\}-free graphs

    Full text link
    A \emph{unichord} in a graph is an edge that is the unique chord of a cycle. A \emph{square} is an induced cycle on four vertices. A graph is \emph{unichord-free} if none of its edges is a unichord. We give a slight restatement of a known structure theorem for unichord-free graphs and use it to show that, with the only exception of the complete graph K4K_4, every square-free, unichord-free graph of maximum degree~3 can be total-coloured with four colours. Our proof can be turned into a polynomial time algorithm that actually outputs the colouring. This settles the class of square-free, unichord-free graphs as a class for which edge-colouring is NP-complete but total-colouring is polynomial
    • …
    corecore