39,539 research outputs found

    Influence of inversion on Mg mobility and electrochemistry in spinels

    Full text link
    Magnesium oxide and sulfide spinels have recently attracted interest as cathode and electrolyte materials for energy-dense Mg batteries, but their observed electrochemical performance depends strongly on synthesis conditions. Using first principles calculations and percolation theory, we explore the extent to which spinel inversion influences Mg2+^{2+} ionic mobility in MgMn2_2O4_4 as a prototypical cathode, and MgIn2_2S4_4 as a potential solid electrolyte. We find that spinel inversion and the resulting changes of the local cation ordering give rise to both increased and decreased Mg2+^{2+} migration barriers, along specific migration pathways, in the oxide as well as the sulfide. To quantify the impact of spinel inversion on macroscopic Mg2+^{2+} transport, we determine the percolation thresholds in both MgMn2_2O4_4 and MgIn2_2S4_4. Furthermore, we analyze the impact of inversion on the electrochemical properties of the MgMn2_2O4_4 cathode via changes in the phase behavior, average Mg insertion voltages and extractable capacities, at varying degrees of inversion. Our results confirm that inversion is a major performance limiting factor of Mg spinels and that synthesis techniques or compositions that stabilize the well-ordered spinel structure are crucial for the success of Mg spinels in multivalent batteries

    Deformation-induced accelerated dynamics in polymer glasses

    Full text link
    Molecular dynamics simulations are used to investigate the effects of deformation on the segmental dynamics in an aging polymer glass. Individual particle trajectories are decomposed into a series of discontinuous hops, from which we obtain the full distribution of relaxation times and displacements under three deformation protocols: step stress (creep), step strain, and constant strain rate deformation. As in experiments, the dynamics can be accelerated by several orders of magnitude during deformation, and the history dependence is entirely erased during yield (mechanical rejuvenation). Aging can be explained as a result of the long tails in the relaxation time distribution of the glass, and similarly, mechanical rejuvenation is understood through the observed narrowing of this distribution during yield. Although the relaxation time distributions under deformation are highly protocol specific, in each case they may be described by a universal acceleration factor that depends only on the strain.Comment: 15 pages, 15 figure

    Towards a System Theoretic Approach to Wireless Network Capacity in Finite Time and Space

    Get PDF
    In asymptotic regimes, both in time and space (network size), the derivation of network capacity results is grossly simplified by brushing aside queueing behavior in non-Jackson networks. This simplifying double-limit model, however, lends itself to conservative numerical results in finite regimes. To properly account for queueing behavior beyond a simple calculus based on average rates, we advocate a system theoretic methodology for the capacity problem in finite time and space regimes. This methodology also accounts for spatial correlations arising in networks with CSMA/CA scheduling and it delivers rigorous closed-form capacity results in terms of probability distributions. Unlike numerous existing asymptotic results, subject to anecdotal practical concerns, our transient one can be used in practical settings: for example, to compute the time scales at which multi-hop routing is more advantageous than single-hop routing

    Influence Maximization Meets Efficiency and Effectiveness: A Hop-Based Approach

    Full text link
    Influence Maximization is an extensively-studied problem that targets at selecting a set of initial seed nodes in the Online Social Networks (OSNs) to spread the influence as widely as possible. However, it remains an open challenge to design fast and accurate algorithms to find solutions in large-scale OSNs. Prior Monte-Carlo-simulation-based methods are slow and not scalable, while other heuristic algorithms do not have any theoretical guarantee and they have been shown to produce poor solutions for quite some cases. In this paper, we propose hop-based algorithms that can easily scale to millions of nodes and billions of edges. Unlike previous heuristics, our proposed hop-based approaches can provide certain theoretical guarantees. Experimental evaluations with real OSN datasets demonstrate the efficiency and effectiveness of our algorithms.Comment: Extended version of the conference paper at ASONAM 2017, 11 page
    • …
    corecore