87,541 research outputs found

    Global Patterns of Synchronization in Human Communications

    Full text link
    Social media are transforming global communication and coordination. The data derived from social media can reveal patterns of human behavior at all levels and scales of society. Using geolocated Twitter data, we have quantified collective behaviors across multiple scales, ranging from the commutes of individuals, to the daily pulse of 50 major urban areas and global patterns of human coordination. Human activity and mobility patterns manifest the synchrony required for contingency of actions between individuals. Urban areas show regular cycles of contraction and expansion that resembles heartbeats linked primarily to social rather than natural cycles. Business hours and circadian rhythms influence daily cycles of work, recreation, and sleep. Different urban areas have characteristic signatures of daily collective activities. The differences are consistent with a new emergent global synchrony that couples behavior in distant regions across the world. A globally synchronized peak that includes exchange of ideas and information across Europe, Africa, Asia and Australasia. We propose a dynamical model to explain the emergence of global synchrony in the context of increasing global communication and reproduce the observed behavior. The collective patterns we observe show how social interactions lead to interdependence of behavior manifest in the synchronization of communication. The creation and maintenance of temporally sensitive social relationships results in the emergence of complexity of the larger scale behavior of the social system.Comment: 20 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:1602.0621

    Rendezvous of Two Robots with Constant Memory

    Full text link
    We study the impact that persistent memory has on the classical rendezvous problem of two mobile computational entities, called robots, in the plane. It is well known that, without additional assumptions, rendezvous is impossible if the entities are oblivious (i.e., have no persistent memory) even if the system is semi-synchronous (SSynch). It has been recently shown that rendezvous is possible even if the system is asynchronous (ASynch) if each robot is endowed with O(1) bits of persistent memory, can transmit O(1) bits in each cycle, and can remember (i.e., can persistently store) the last received transmission. This setting is overly powerful. In this paper we weaken that setting in two different ways: (1) by maintaining the O(1) bits of persistent memory but removing the communication capabilities; and (2) by maintaining the O(1) transmission capability and the ability to remember the last received transmission, but removing the ability of an agent to remember its previous activities. We call the former setting finite-state (FState) and the latter finite-communication (FComm). Note that, even though its use is very different, in both settings, the amount of persistent memory of a robot is constant. We investigate the rendezvous problem in these two weaker settings. We model both settings as a system of robots endowed with visible lights: in FState, a robot can only see its own light, while in FComm a robot can only see the other robot's light. We prove, among other things, that finite-state robots can rendezvous in SSynch, and that finite-communication robots are able to rendezvous even in ASynch. All proofs are constructive: in each setting, we present a protocol that allows the two robots to rendezvous in finite time.Comment: 18 pages, 3 figure
    • …
    corecore