14,910 research outputs found

    A multiple exp-function method for nonlinear differential equations and its application

    Full text link
    A multiple exp-function method to exact multiple wave solutions of nonlinear partial differential equations is proposed. The method is oriented towards ease of use and capability of computer algebra systems, and provides a direct and systematical solution procedure which generalizes Hirota's perturbation scheme. With help of Maple, an application of the approach to the 3+13+1 dimensional potential-Yu-Toda-Sasa-Fukuyama equation yields exact explicit 1-wave and 2-wave and 3-wave solutions, which include 1-soliton, 2-soliton and 3-soliton type solutions. Two cases with specific values of the involved parameters are plotted for each of 2-wave and 3-wave solutions.Comment: 12 pages, 16 figure

    Seven common errors in finding exact solutions of nonlinear differential equations

    Full text link
    We analyze the common errors of the recent papers in which the solitary wave solutions of nonlinear differential equations are presented. Seven common errors are formulated and classified. These errors are illustrated by using multiple examples of the common errors from the recent publications. We show that many popular methods in finding of the exact solutions are equivalent each other. We demonstrate that some authors look for the solitary wave solutions of nonlinear ordinary differential equations and do not take into account the well - known general solutions of these equations. We illustrate several cases when authors present some functions for describing solutions but do not use arbitrary constants. As this fact takes place the redundant solutions of differential equations are found. A few examples of incorrect solutions by some authors are presented. Several other errors in finding the exact solutions of nonlinear differential equations are also discussed.Comment: 42 page

    Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs

    Get PDF
    Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi's elliptic functions. For systems with parameters, the algorithms determine the conditions on the parameters so that the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi's sn or cn functions. Examples illustrate key steps of the algorithms. The new algorithms are implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute new special solutions of nonlinear PDEs. Use of the package, implementation issues, scope, limitations, and future extensions of the software are addressed. A survey is given of related algorithms and symbolic software to compute exact solutions of nonlinear differential equations.Comment: 39 pages. Software available from Willy Hereman's home page at http://www.mines.edu/fs_home/whereman

    Potential Nonclassical Symmetries and Solutions of Fast Diffusion Equation

    Full text link
    The fast diffusion equation ut=(u−1ux)xu_t=(u^{-1}u_x)_x is investigated from the symmetry point of view in development of the paper by Gandarias [Phys. Lett. A 286 (2001) 153-160]. After studying equivalence of nonclassical symmetries with respect to a transformation group, we completely classify the nonclassical symmetries of the corresponding potential equation. As a result, new wide classes of potential nonclassical symmetries of the fast diffusion equation are obtained. The set of known exact non-Lie solutions are supplemented with the similar ones. It is shown that all known non-Lie solutions of the fast diffusion equation are exhausted by ones which can be constructed in a regular way with the above potential nonclassical symmetries. Connection between classes of nonclassical and potential nonclassical symmetries of the fast diffusion equation is found.Comment: 13 pages, section 3 is essentially revise

    Exactly solvable variable parametric Burgers type models

    Full text link
    Exactly solvable variable parametric Burgers type equations in one-dimension are introduced, and two different approaches for solving the corresponding initial value problems are given. The first one is using the relationship between the variable parametric models and their standard counterparts. The second approach is a direct linearization of the variable parametric Burgers model to a variable parametric parabolic model via a generalized Cole-Hopf transform. Eventually, the problem of finding analytic and exact solutions of the variable parametric models reduces to that of solving a corresponding second order linear ODE with time dependent coefficients. This makes our results applicable to a wide class of exactly solvable Burgers type equations related with the classical Sturm-Liouville problems for the orthogonal polynomials
    • …
    corecore