139 research outputs found

    Absence of anomalous dissipation of energy in forced two dimensional fluid equations

    Full text link
    We prove absence of anomalous dissipation of energy for forced critical SQG in two space dimensions

    Nonlinear maximum principles for dissipative linear nonlocal operators and applications

    Full text link
    We obtain a family of nonlinear maximum principles for linear dissipative nonlocal operators, that are general, robust, and versatile. We use these nonlinear bounds to provide transparent proofs of global regularity for critical SQG and critical d-dimensional Burgers equations. In addition we give applications of the nonlinear maximum principle to the global regularity of a slightly dissipative anti-symmetric perturbation of 2d incompressible Euler equations and generalized fractional dissipative 2d Boussinesq equations

    LONG TIME DYNAMICS OF FORCED CRITICAL SQG

    Get PDF
    ABSTRACT. We prove the existence of a compact global attractor for the dynamics of the forced critical surface quasi-geostrophic equation (SQG) and prove that it has finite fractal (box-counting) dimension. In order to do so we give a new proof of global regularity for critical SQG. The main ingredient is the nonlinear maximum principle in the form of a nonlinear lower bound on the fractional Laplacian, which is used to bootstrap the regularity directly from L ∞ to C α , without the use of De Giorgi techniques. We prove that for large time, the norm of the solution measured in a sufficiently strong topology becomes bounded with bounds that depend solely on norms of the force, which is assumed to belong merely to L ∞ ∩ H 1 . Using the fact that the solution is bounded independently of the initial data after a transient time, in spaces conferring enough regularity, we prove the existence of a compact absorbing set for the dynamics in H 1 , obtain the compactness of the linearization and the continuous differentiability of the solution map. We then prove exponential decay of high yet finite dimensional volume elements in H 1 along solution trajectories, and use this property to bound the dimension of the global attractor

    Zonal jets at the laboratory scale: hysteresis and Rossby waves resonance

    Get PDF
    The dynamics, structure and stability of zonal jets in planetary flows are still poorly understood, especially in terms of coupling with the small-scale turbulent flow. Here, we use an experimental approach to address the questions of zonal jets formation and long-term evolution. A strong and uniform topographic β\beta-effect is obtained inside a water-filled rotating tank thanks to the paraboloidal fluid free upper surface combined with a specifically designed bottom plate. A small-scale turbulent forcing is performed by circulating water through the base of the tank. Time-resolving PIV measurements reveal the self-organization of the flow into multiple zonal jets with strong instantaneous signature. We identify a subcritical bifurcation between two regimes of jets depending on the forcing intensity. In the first regime, the jets are steady, weak in amplitude, and directly forced by the local Reynolds stresses due to our forcing. In the second one, we observe highly energetic and dynamic jets of width larger than the forcing scale. An analytical modeling based on the quasi-geostrophic approximation reveals that this subcritical bifurcation results from the resonance between the directly forced Rossby waves and the background zonal flow
    corecore