6 research outputs found

    A Pseudo-logarithmic Image Processing Framework for Edge Detection

    Full text link
    Abstract. The paper presents a new [pseudo-] Logarithmic Model for Image Processing (LIP), which allows the computation of gray-level ad-dition, substraction and multiplication with scalars within a fixed gray-level range [0;D] without the use of clipping. The implementation of Laplacian edge detection techniques under the proposed model yields superior performance in biomedical applications as compared with the classical operations (performed either as real axis operations, either as classical LIP models).

    Colour image enhancement by virtual histogram approach

    Full text link

    Radar satellite imagery for humanitarian response. Bridging the gap between technology and application

    Get PDF
    This work deals with radar satellite imagery and its potential to assist of humanitarian operations. As the number of displaced people annually increases, both hosting countries and relief organizations face new challenges which are often related to unclear situations and lack of information on the number and location of people in need, as well as their environments. It was demonstrated in numerous studies that methods of earth observation can deliver this important information for the management of crises, the organization of refugee camps, and the mapping of environmental resources and natural hazards. However, most of these studies make use of -high-resolution optical imagery, while the role of radar satellites is widely neglected. At the same time, radar sensors have characteristics which make them highly suitable for humanitarian response, their potential to capture images through cloud cover and at night in the first place. Consequently, they potentially allow quicker response in cases of emergencies than optical imagery. This work demonstrates the currently unused potential of radar imagery for the assistance of humanitarian operations by case studies which cover the information needs of specific emergency situations. They are thematically grouped into topics related to population, natural hazards and the environment. Furthermore, the case studies address different levels of scientific objectives: The main intention is the development of innovative techniques of digital image processing and geospatial analysis as an answer on the identified existing research gaps. For this reason, novel approaches are presented on the mapping of refugee camps and urban areas, the allocation of biomass and environmental impact assessment. Secondly, existing methods developed for radar imagery are applied, refined, or adapted to specifically demonstrate their benefit in a humanitarian context. This is done for the monitoring of camp growth, the assessment of damages in cities affected by civil war, and the derivation of areas vulnerable to flooding or sea-surface changes. Lastly, to foster the integration of radar images into existing operational workflows of humanitarian data analysis, technically simple and easily-adaptable approaches are suggested for the mapping of rural areas for vaccination campaigns, the identification of changes within and around refugee camps, and the assessment of suitable locations for groundwater drillings. While the studies provide different levels of technical complexity and novelty, they all show that radar imagery can largely contribute to the provision of a variety of information which is required to make solid decisions and to effectively provide help in humanitarian operations. This work furthermore demonstrates that radar images are more than just an alternative image source for areas heavily affected by cloud cover. In fact, what makes them valuable is their information content regarding the characteristics of surfaces, such as shape, orientation, roughness, size, height, moisture, or conductivity. All these give decisive insights about man-made and natural environments in emergency situations and cannot be provided by optical images Finally, the findings of the case studies are put into a larger context, discussing the observed potential and limitations of the presented approaches. The major challenges are summarized which need be addressed to make radar imagery more useful in humanitarian operations in the context of upcoming technical developments. New radar satellites and technological progress in the fields of machine learning and cloud computing will bring new opportunities. At the same time, this work demonstrated the large need for further research, as well as for the collaboration and transfer of knowledge and experiences between scientists, users and relief workers in the field. It is the first extensive scientific compilation of this topic and the first step for a sustainable integration of radar imagery into operational frameworks to assist humanitarian work and to contribute to a more efficient provision of help to those in need.Die vorliegende Arbeit beschäftigt sich mit bildgebenden Radarsatelliten und ihrem potenziellen Beitrag zur Unterstützung humanitärer Einsätze. Die jährlich zunehmende Zahl an vertriebenen oder geflüchteten Menschen stellt sowohl Aufnahmeländer als auch humanitäre Organisationen vor große Herausforderungen, da sie oft mit unübersichtlichen Verhältnissen konfrontiert sind. Effektives Krisenmanagement, die Planung und Versorgung von Flüchtlingslagern, sowie der Schutz der betroffenen Menschen erfordern jedoch verlässliche Angaben über Anzahl und Aufenthaltsort der Geflüchteten und ihrer natürlichen Umwelt. Die Bereitstellung dieser Informationen durch Satellitenbilder wurde bereits in zahlreichen Studien aufgezeigt. Sie beruhen in der Regel auf hochaufgelösten optischen Aufnahmen, während bildgebende Radarsatelliten bisher kaum Anwendung finden. Dabei verfügen gerade Radarsatelliten über Eigenschaften, die hilfreich für humanitäre Einsätze sein können, allen voran ihre Unabhängigkeit von Bewölkung oder Tageslicht. Dadurch ermöglichen sie in Krisenfällen verglichen mit optischen Satelliten eine schnellere Reaktion. Diese Arbeit zeigt das derzeit noch ungenutzte Potenzial von Radardaten zur Unterstützung humanitärer Arbeit anhand von Fallstudien auf, in denen konkrete Informationen für ausgewählte Krisensituationen bereitgestellt werden. Sie sind in die Themenbereiche Bevölkerung, Naturgefahren und Ressourcen aufgeteilt, adressieren jedoch unterschiedliche wissenschaftliche Ansprüche: Der Hauptfokus der Arbeit liegt auf der Entwicklung von innovativen Methoden zur Verarbeitung von Radarbildern und räumlichen Daten als Antwort auf den identifizierten Forschungsbedarf in diesem Gebiet. Dies wird anhand der Kartierung von Flüchtlingslagern zur Abschätzung ihrer Bevölkerung, zur Bestimmung von Biomasse, sowie zur Ermittlung des Umwelteinflusses von Flüchtlingslagern aufgezeigt. Darüber hinaus werden existierende oder erprobte Ansätze für die Anwendung im humanitären Kontext angepasst oder weiterentwickelt. Dies erfolgt im Rahmen von Fallstudien zur Dynamik von Flüchtlingslagern, zur Ermittlung von Schäden an Gebäuden in Kriegsgebieten, sowie zur Erkennung von Risiken durch Überflutung. Zuletzt soll die Integration von Radardaten in bereits existierende Abläufe oder Arbeitsroutinen in der humanitären Hilfe anhand technisch vergleichsweise einfacher Ansätze vorgestellt und angeregt werden. Als Beispiele dienen hier die radargestützte Kartierung von entlegenen Gebieten zur Unterstützung von Impfkampagnen, die Identifizierung von Veränderungen in Flüchtlingslagern, sowie die Auswahl geeigneter Standorte zur Grundwasserentnahme. Obwohl sich die Fallstudien hinsichtlich ihres Innovations- und Komplexitätsgrads unterscheiden, zeigen sie alle den Mehrwert von Radardaten für die Bereitstellung von Informationen, um schnelle und fundierte Planungsentscheidungen zu unterstützen. Darüber hinaus wird in dieser Arbeit deutlich, dass Radardaten für humanitäre Zwecke mehr als nur eine Alternative in stark bewölkten Gebieten sind. Durch ihren Informationsgehalt zur Beschaffenheit von Oberflächen, beispielsweise hinsichtlich ihrer Rauigkeit, Feuchte, Form, Größe oder Höhe, sind sie optischen Daten überlegen und daher für viele Anwendungsbereiche im Kontext humanitärer Arbeit besonders. Die in den Fallstudien gewonnenen Erkenntnisse werden abschließend vor dem Hintergrund von Vor- und Nachteilen von Radardaten, sowie hinsichtlich zukünftiger Entwicklungen und Herausforderungen diskutiert. So versprechen neue Radarsatelliten und technologische Fortschritte im Bereich der Datenverarbeitung großes Potenzial. Gleichzeitig unterstreicht die Arbeit einen großen Bedarf an weiterer Forschung, sowie an Austausch und Zusammenarbeit zwischen Wissenschaftlern, Anwendern und Einsatzkräften vor Ort. Die vorliegende Arbeit ist die erste umfassende Darstellung und wissenschaftliche Aufarbeitung dieses Themenkomplexes. Sie soll als Grundstein für eine langfristige Integration von Radardaten in operationelle Abläufe dienen, um humanitäre Arbeit zu unterstützen und eine wirksame Hilfe für Menschen in Not ermöglichen

    Traitement logarithmique d'images couleur

    Get PDF
    Cette thèse de doctorat porte sur l'extension du modèle LIP (Logarithmic Image Processing) aux images en couleurs. Le modèle CoLIP (Color Logarithmic Image Processing) est défini, étudié et appliqué au traitement d'image dans ce manuscrit.Le modèle LIP est un cadre mathématique original complet, développé pour le traitement d'images à niveaux de gris, rigoureusement établi mathématiquement, compatible avec les lois physiques de formation d'image, et mieux adapté que l'approche classique pour modéliser la perception visuelle humaine de l'intensité de la lumière. Après une étude de la vision des couleurs et de la science des couleurs, le modèle CoLIP est construit en suivant les étapes de la perception humaine des couleurs, tout en intégrant le cadre mathématique du modèle LIP. Dans un premier temps, le CoLIP est construit en suivant les étapes de la photoréception, de la compression lumineuse et du codage antagoniste. Il est donc développé comme un espace couleur représentant une image couleur par un ensemble de trois fonctions de tons antagonistes, sur lesquelles sont définies les opérations CoLIP d'addition et de multiplication par un scalaire, qui confèrent à cet espace couleur la structure d'espace vectoriel couleur. Ensuite, l'espace couleur CoLIP étant un espace de type luminance-chrominance uniforme, les attributs relatifs et absolus de la perception humaine des couleurs (teinte, chroma, coloration, luminosité, clarté, et saturation) peuvent être définis. Cette construction fait du CoLIP à la fois un espace vectoriel couleur bien structuré mathématiquement, et un modèle d'apparence couleur. Dans un deuxième temps, un grand nombre de justifications physiques, mathématiques, et psychophysiques du modèle CoLIP sont proposées, notamment la comparaison des formes des ellipses de MacAdam dans l'espace de couleur uniforme CoLIP et dans d'autres modèles uniformes, sur des critères d'aire et d'excentricité des ellipses. Enfin, diverses applications utilisant la structure d'espace vectoriel couleur du modèle CoLIP sont proposées, telles que le rehaussement de contraste, le rehaussement d'image et la détection de contour. Des applications utilisant la structure de modèle d'apparence couleur, qui permet de travailler sur les notions de teinte, de luminosité et de saturation, sont également développées. Une application spécifique permettant de mesurer la viabilité des cellules sur des images de lames obtenues par cytocentrifugation et marquage couleur est également proposée.This doctoral thesis introduces the extension of the LIP (Logarithmic Image Processing) model to color images. The CoLIP (Color Logarithmic Image Processing) model is defined, studied and applied to image processing in this manuscript. The Logarithmic Image Processing (LIP) approach is a mathematical framework developed for the representation and processing of images valued in a bounded intensity range. The LIP theory is physically and psychophysically well justified since it is consistent with several laws of human brightness perception and with the multiplicative image formation model. Following a study of color vision and color science, the CoLIP model is constructed according to the human color perception stages, while integrating the mathematical framework of the LIP.Initially, the CoLIP is constructed by following the photoreception, non-linear cone compression, and opponent processing human color perception steps. It is developed as a color space representing a color image by a set of three antagonists tones functions, that can be combined by means of specific CoLIP operations: addition, scalar multiplication, and subtraction, which provide to the CoLIP framework a vector space structure. Then, as the CoLIP color space is a luminance-chrominance uniform color space, relative and absolute perception attributes (hue, chroma, colorfulness, brightness, lightness, and saturation) can be defined. Thus, the CoLIP framework combines advantages of a mathematically well structured vector space, and advantages of a color appearance model. In a second step, physical, mathematical, physiological and psychophysical justifications are proposed including a comparison of MacAdam ellipses shapes in the CoLIP uniform model, and in other uniform models, based on ellipses area and eccentricity criterions. Finally, various applications using the CoLIP vector space structure are proposed, such as contrast enhancement, image enhancement and edge detection. Applications using the CoLIP color appearance model structure, defined on hue, brightness and saturation criterions are also proposed. A specific application dedicated to the quantification of viable cells from samples obtained after cytocentrifugation process and coloration is also presented.ST ETIENNE-ENS des Mines (422182304) / SudocSudocFranceF

    Internal Defect Detection in Hardwood Logs With Fast Magnetic Resonance Imaging.

    Get PDF
    Identification of defects such as knots in logs before the cutting operation would allow lumber mills to maximize the value of lumber from each log. This dissertation presented images obtained from scanning an oak log with magnetic resonance imaging (MRI). The unique characteristics of MRI images of hardwood logs were noted and were used to derive a quick algorithm to isolate defects. Defect regions had some pixels that varied considerably in intensity from their neighborhood, providing a seed for initiating the defect region. There was an overlap between the pixel gray level of the defects and clear wood. Therefore, traditional thresholding techniques did not cleanly separate these regions. In this study, region-growing methods were used to extract the defects. The algorithm grew the defect region seed until the border-pixel gray levels approached the average level of the neighborhood. The region-growing methods obtained more accurate defect regions than thresholding methods because of the simultaneous consideration of gray level and adjacency information. Two methods of MRI imaging were considered: spin-echo and echo-planar. Spin-echo imaging provided clear, detailed images but required about 20 seconds of acquisition time, which was too slow to be used in a production environment. Echo-planar images could be acquired in about 1/2 second, which was fast enough for production, but the images were fuzzy and noisy. The dissertation presented an algorithm that found the defect regions in spin-echo images. Region-growing methods use a number of parameters and the best parameters were unique for each image. However, common image statistics could be used to predict the proper parameters. The dissertation also presented an algorithm that found most of the defect regions in echo-planar images. Enhancing the echo-planar images using common general-purpose image-enhancement techniques failed because the lack of discrimination allowed the process to smooth image structures as well as noise. By taking advantage of the structure of a tree, smoothing between MRI frames accomplished the goal of smoothing along homogeneous areas and not across image structures. This z-axis smoothing enhanced the echo-planar image visually and reduced the number of false alarm defect regions
    corecore