389,762 research outputs found

    Quantized mirror curves and resummed WKB

    Full text link
    Based on previous insights, we present an ansatz to obtain quantization conditions and eigenfunctions for a family of difference equations which arise from quantized mirror curves in the context of local mirror symmetry of toric Calabi-Yau threefolds. It is a first principles construction, which yields closed expressions for the quantization conditions and the eigenfunctions when /2πQ\hbar/2\pi \in \mathbb Q. The key ingredient is the modular duality structure of the underlying quantum integrable system. We use our ansatz to write down explicit results in some examples, which are successfully checked against purely numerical results for both the spectrum and the eigenfunctions. Concerning the quantization conditions, we also provide evidence that, in the rational case, this method yields a resummation of conjectured quantization conditions involving enumerative invariants of the underlying toric Calabi-Yau threefold.Comment: 37 pages, 8 figures, 1 table; v2: minor corrections, more details added in section

    Eigen-analysis of a Fully Viscous Boundary-Layer flow Interacting with a Finite Compliant Surface

    Get PDF
    A method and preliminary results are presented for the determination of eigenvalues and eigenmodes from fully viscous boundary layer flow interacting with a finite length one-sided compliant wall. This is an extension to the analysis of inviscid flow-structure systems which has been established in previous work. A combination of spectral and finite-difference methods are applied to a linear perturbation form of the full Navier-Stokes equations and one-dimensional beam equation. This yields a system of coupled linear equations that accurately define the spatio-temporal development of linear perturbations to a boundary layer flow over a finite-length compliant surface. Standard Krylov subspace projection methods are used to extract the eigenvalues from this complex system of equations. To date, the analysis of the development of Tollmien-Schlichting (TS) instabilities over a finite compliant surface have relied upon DNS-type results across a narrow (or even singular) spectrum of TS waves. The results from this method have the potential to describe conclusively the role that a finite length compliant surface has in the development of two-dimensional TS instabilities and other FSI instabilities across a broad spectrum

    Numerical Simulation of Vortex Crystals and Merging in N-Point Vortex Systems with Circular Boundary

    Full text link
    In two-dimensional (2D) inviscid incompressible flow, low background vorticity distribution accelerates intense vortices (clumps) to merge each other and to array in the symmetric pattern which is called ``vortex crystals''; they are observed in the experiments on pure electron plasma and the simulations of Euler fluid. Vortex merger is thought to be a result of negative ``temperature'' introduced by L. Onsager. Slight difference in the initial distribution from this leads to ``vortex crystals''. We study these phenomena by examining N-point vortex systems governed by the Hamilton equations of motion. First, we study a three-point vortex system without background distribution. It is known that a N-point vortex system with boundary exhibits chaotic behavior for N\geq 3. In order to investigate the properties of the phase space structure of this three-point vortex system with circular boundary, we examine the Poincar\'e plot of this system. Then we show that topology of the Poincar\'e plot of this system drastically changes when the parameters, which are concerned with the sign of ``temperature'', are varied. Next, we introduce a formula for energy spectrum of a N-point vortex system with circular boundary. Further, carrying out numerical computation, we reproduce a vortex crystal and a vortex merger in a few hundred point vortices system. We confirm that the energy of vortices is transferred from the clumps to the background in the course of vortex crystallization. In the vortex merging process, we numerically calculate the energy spectrum introduced above and confirm that it behaves as k^{-\alpha},(\alpha\approx 2.2-2.8) at the region 10^0<k<10^1 after the merging.Comment: 30 pages, 11 figures. to be published in Journal of Physical Society of Japan Vol.74 No.

    Regular networks of Luttinger liquids

    Full text link
    We consider arrays of Luttinger liquids, where each node is described by a unitary scattering matrix. In the limit of small electron-electron interaction, we study the evolution of these scattering matrices as the high-energy single particle states are gradually integrated out. Interestingly, we obtain the same renormalization group equations as those derived by Lal, Rao, and Sen, for a system composed of a single node coupled to several semi-infinite 1D wires. The main difference between the single node geometry and a regular lattice is that in the latter case, the single particle spectrum is organized into periodic energy bands, so that the renormalization procedure has to stop when the last totally occupied band has been eliminated. We therefore predict a strongly renormalized Luttinger liquid behavior for generic filling factors, which should exhibit power-law suppression of the conductivity at low temperatures E_{F}/(k_{F}a) > 1. Some fully insulating ground-states are expected only for a discrete set of integer filling factors for the electronic system. A detailed discussion of the scattering matrix flow and its implication for the low energy band structure is given on the example of a square lattice.Comment: 16 pages, 7 figure

    Relation between the eigenfrequencies of Bogoliubov excitations of Bose-Einstein condensates and the eigenvalues of the Jacobian in a time-dependent variational approach

    Full text link
    We study the relation between the eigenfrequencies of the Bogoliubov excitations of Bose-Einstein condensates, and the eigenvalues of the Jacobian stability matrix in a variational approach which maps the Gross-Pitaevskii equation to a system of equations of motion for the variational parameters. We do this for Bose-Einstein condensates with attractive contact interaction in an external trap, and for a simple model of a self-trapped Bose-Einstein condensate with attractive 1/r interaction. The stationary solutions of the Gross-Pitaevskii equation and Bogoliubov excitations are calculated using a finite-difference scheme. The Bogoliubov spectra of the ground and excited state of the self-trapped monopolar condensate exhibits a Rydberg-like structure, which can be explained by means of a quantum defect theory. On the variational side, we treat the problem using an ansatz of time-dependent coupled Gaussians combined with spherical harmonics. We first apply this ansatz to a condensate in an external trap without long-range interaction, and calculate the excitation spectrum with the help of the time-dependent variational principle. Comparing with the full-numerical results, we find a good agreement for the eigenfrequencies of the lowest excitation modes with arbitrary angular momenta. The variational method is then applied to calculate the excitations of the self-trapped monopolar condensates, and the eigenfrequencies of the excitation modes are compared.Comment: 15 pages, 12 figure

    Analytical study of the liquid phase transient behavior of a high temperature heat pipe

    Get PDF
    The transient operation of the liquid phase of a high temperature heat pipe is studied. The study was conducted in support of advanced heat pipe applications that require reliable transport of high temperature drops and significant distances under a broad spectrum of operating conditions. The heat pipe configuration studied consists of a sealed cylindrical enclosure containing a capillary wick structure and sodium working fluid. The wick is an annular flow channel configuration formed between the enclosure interior wall and a concentric cylindrical tube of fine pore screen. The study approach is analytical through the solution of the governing equations. The energy equation is solved over the pipe wall and liquid region using the finite difference Peaceman-Rachford alternating direction implicit numerical method. The continuity and momentum equations are solved over the liquid region by the integral method. The energy equation and liquid dynamics equation are tightly coupled due to the phase change process at the liquid-vapor interface. A kinetic theory model is used to define the phase change process in terms of the temperature jump between the liquid-vapor surface and the bulk vapor. Extensive auxiliary relations, including sodium properties as functions of temperature, are used to close the analytical system. The solution procedure is implemented in a FORTRAN algorithm with some optimization features to take advantage of the IBM System/370 Model 3090 vectorization facility. The code was intended for coupling to a vapor phase algorithm so that the entire heat pipe problem could be solved. As a test of code capabilities, the vapor phase was approximated in a simple manner

    Iteration Stability for Simple Newtonian Stellar Systems

    Get PDF
    For an equation of state in which pressure is a function only of density, the analysis of Newtonian stellar structure is simple in principle if the system is axisymmetric, or consists of a corotating binary. It is then required only to solve two equations: one stating that the "injection energy", κ\kappa, a potential, is constant throughout the stellar fluid, and the other being the integral over the stellar fluid to give the gravitational potential. An iterative solution of these equations generally diverges if κ\kappa is held fixed, but converges with other choices. We investigate the mathematical reason for this convergence/divergence by starting the iteration from an approximation that is perturbatively different from the actual solution. A cycle of iteration is then treated as a linear "updating" operator, and the properties of the linear operator, especially its spectrum, determine the convergence properties. For simplicity, we confine ourselves to spherically symmetric models in which we analyze updating operators both in the finite dimensional space corresponding to a finite difference representation of the problem, and in the continuum, and we find that the fixed-κ\kappa operator is self-adjoint and generally has an eigenvalue greater than unity; in the particularly important case of a polytropic equation of state with index greater than unity, we prove that there must be such an eigenvalue. For fixed central density, on the other hand, we find that the updating operator has only a single eigenvector, with zero eigenvalue, and is nilpotent in finite dimension, thereby giving a convergent solution.Comment: 16 pages, 3 figure
    corecore