125,293 research outputs found

    Bound states and entanglement in the excited states of quantum spin chains

    Full text link
    We investigate entanglement properties of the excited states of the spin-1/2 Heisenberg (XXX) chain with isotropic antiferromagnetic interactions, by exploiting the Bethe ansatz solution of the model. We consider eigenstates obtained from both real and complex solutions ("strings") of the Bethe equations. Physically, the former are states of interacting magnons, whereas the latter contain bound states of groups of particles. We first focus on the situation with few particles in the chain. Using exact results and semiclassical arguments, we derive an upper bound S_MAX for the entanglement entropy. This exhibits an intermediate behavior between logarithmic and extensive, and it is saturated for highly-entangled states. As a function of the eigenstate energy, the entanglement entropy is organized in bands. Their number depends on the number of blocks of contiguous Bethe-Takahashi quantum numbers. In presence of bound states a significant reduction in the entanglement entropy occurs, reflecting that a group of bound particles behaves effectively as a single particle. Interestingly, the associated entanglement spectrum shows edge-related levels. At finite particle density, the semiclassical bound S_MAX becomes inaccurate. For highly-entangled states S_A\propto L_c, with L_c the chord length, signaling the crossover to extensive entanglement. Finally, we consider eigenstates containing a single pair of bound particles. No significant entanglement reduction occurs, in contrast with the few-particle case.Comment: 39 pages, 10 figure. as published in JSTAT. Invited submission to JSTAT Special Issue: Quantum Entanglement in Condensed Matter Physic

    Phase diagram of the anti-ferromagnetic xxz model in the presence of an external magnetic field

    Full text link
    The anisotropic s=1/2 anti-ferromagnetic Heisenberg chain in the presence of an external magnetic field is studied by using the standard quantum renormalization group. We obtain the critical line of the transition from partially magnetized (PM) phase to the saturated ferromagnetic (SFM) phase. The crossover exponent between the PM phase and anti-ferromagnetic Ising (AFI) phase is evaluated. Our results show that the anisotropy(\d) term is relevant and causes crossover. These results indicate that the standard RG approach yields fairly good values for the critical points and their exponents. The magnetization curve, correlation functions and the ground state energy per site are obtained and compared with the known exact results.Comment: A LaTex file(20 pages) and 9 PS figure

    Entanglement of Solitons in the Frenkel-Kontorova Model

    Full text link
    We investigate entanglement of solitons in the continuum-limit of the nonlinear Frenkel-Kontorova chain. We find that the entanglement of solitons manifests particle-like behavior as they are characterized by localization of entanglement. The von-Neumann entropy of solitons mixes critical with noncritical behaviors. Inside the core of the soliton the logarithmic increase of the entropy is faster than the universal increase of a critical field, whereas outside the core the entropy decreases and saturates the constant value of the corresponding massive noncritical field. In addition, two solitons manifest long-range entanglement that decreases with the separation of the solitons more slowly than the universal decrease of the critical field. Interestingly, in the noncritical regime of the Frenkel-Kontorova model, entanglement can even increase with the separation of the solitons. We show that most of the entanglement of the so-called internal modes of the solitons is saturated by local degrees of freedom inside the core, and therefore we suggest using the internal modes as carriers of quantum information.Comment: 16 pages, 22 figure

    Hubbard model: Pinning of occupation numbers and role of symmetries

    Full text link
    Fermionic natural occupation numbers do not only obey Pauli's exclusion principle, but are even further restricted by so-called generalized Pauli constraints. Such restrictions are particularly relevant whenever they are saturated by given natural occupation numbers λ⃗=(λi)\vec{\lambda}=(\lambda_i). For few-site Hubbard models we explore the occurrence of this pinning effect. By varying the on-site interaction UU for the fermions we find sharp transitions from pinning of λ⃗\vec{\lambda} to the boundary of the allowed region to nonpinning. We analyze the origin of this phenomenon which turns out be either a crossing of natural occupation numbers λi(U),λi+1(U)\lambda_{i}(U), \lambda_{i+1}(U) or a crossing of NN-particle energies. Furthermore, we emphasize the relevance of symmetries for the occurrence of pinning. Based on recent progress in the field of ultracold atoms our findings suggest an experimental set-up for the realization of the pinning effect.Comment: published versio
    • …
    corecore