3,442 research outputs found

    The structure of graphs not admitting a fixed immersion

    Get PDF
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall

    The structure of graphs not admitting a fixed immersion

    Full text link
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall

    Lean Tree-Cut Decompositions: Obstructions and Algorithms

    Get PDF
    The notion of tree-cut width has been introduced by Wollan in [The structure of graphs not admitting a fixed immersion, Journal of Combinatorial Theory, Series B, 110:47 - 66, 2015]. It is defined via tree-cut decompositions, which are tree-like decompositions that highlight small (edge) cuts in a graph. In that sense, tree-cut decompositions can be seen as an edge-version of tree-decompositions and have algorithmic applications on problems that remain intractable on graphs of bounded treewidth. In this paper, we prove that every graph admits an optimal tree-cut decomposition that satisfies a certain Menger-like condition similar to that of the lean tree decompositions of Thomas [A Menger-like property of tree-width: The finite case, Journal of Combinatorial Theory, Series B, 48(1):67 - 76, 1990]. This allows us to give, for every k in N, an upper-bound on the number immersion-minimal graphs of tree-cut width k. Our results imply the constructive existence of a linear FPT-algorithm for tree-cut width

    Deformations of constant mean curvature 1/2 surfaces in H2xR with vertical ends at infinity

    Full text link
    We study constant mean curvature 1/2 surfaces in H2xR that admit a compactification of the mean curvature operator. We show that a particular family of complete entire graphs over H2 admits a structure of infinite dimensional manifold with local control on the behaviors at infinity. These graphs also appear to have a half-space property and we deduce a uniqueness result at infinity. Deforming non degenerate constant mean curvature 1/2 annuli, we provide a large class of (non rotational) examples and construct (possibly embedded) annuli without axis, i.e. with two vertical, asymptotically rotational, non aligned ends.Comment: 35 pages. Addition of a half-space theore

    A note on forbidding clique immersions

    Full text link
    Robertson and Seymour proved that the relation of graph immersion is well-quasi-ordered for finite graphs. Their proof uses the results of graph minors theory. Surprisingly, there is a very short proof of the corresponding rough structure theorem for graphs without KtK_t-immersions; it is based on the Gomory-Hu theorem. The same proof also works to establish a rough structure theorem for Eulerian digraphs without Kt\vec{K}_t-immersions, where Kt\vec{K}_t denotes the bidirected complete digraph of order tt

    The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space \l^3

    Full text link
    We show that a complete embedded maximal surface in the 3-dimensional Lorentz-Minkowski space L3L^3 with a finite number of singularities is, up to a Lorentzian isometry, an entire graph over any spacelike plane asymptotic to a vertical half catenoid or a horizontal plane and with conelike singular points. We study the space GnG_n of entire maximal graphs over {x3=0}\{x_3=0\} in L3L^3 with n+12n+1 \geq 2 conelike singularities and vertical limit normal vector at infinity. We show that GnG_n is a real analytic manifold of dimension 3n+4,3n+4, and the coordinates are given by the position of the singular points in R3R^3 and the logarithmic growth at the end. We also introduce the moduli space MnM_n of {\em marked} graphs with n+1n+1 singular points (a mark in a graph is an ordering of its singularities), which is a (n+1)(n+1)-sheeted covering of Gn.G_n. We prove that identifying marked graphs differing by translations, rotations about a vertical axis, homotheties or symmetries about a horizontal plane, the corresponding quotient space MnM_n is an analytic manifold of dimension 3n1.3n-1.Comment: 32 pages, 4 figures, corrected typos, former Theorem 3.3 (now Theorem 2.2) modifie

    Cutwidth: obstructions and algorithmic aspects

    Get PDF
    Cutwidth is one of the classic layout parameters for graphs. It measures how well one can order the vertices of a graph in a linear manner, so that the maximum number of edges between any prefix and its complement suffix is minimized. As graphs of cutwidth at most kk are closed under taking immersions, the results of Robertson and Seymour imply that there is a finite list of minimal immersion obstructions for admitting a cut layout of width at most kk. We prove that every minimal immersion obstruction for cutwidth at most kk has size at most 2O(k3logk)2^{O(k^3\log k)}. As an interesting algorithmic byproduct, we design a new fixed-parameter algorithm for computing the cutwidth of a graph that runs in time 2O(k2logk)n2^{O(k^2\log k)}\cdot n, where kk is the optimum width and nn is the number of vertices. While being slower by a logk\log k-factor in the exponent than the fastest known algorithm, given by Thilikos, Bodlaender, and Serna in [Cutwidth I: A linear time fixed parameter algorithm, J. Algorithms, 56(1):1--24, 2005] and [Cutwidth II: Algorithms for partial ww-trees of bounded degree, J. Algorithms, 56(1):25--49, 2005], our algorithm has the advantage of being simpler and self-contained; arguably, it explains better the combinatorics of optimum-width layouts
    corecore