We present an easy structure theorem for graphs which do not admit an
immersion of the complete graph. The theorem motivates the definition of a
variation of tree decompositions based on edge cuts instead of vertex cuts
which we call tree-cut decompositions. We give a definition for the width of
tree-cut decompositions, and using this definition along with the structure
theorem for excluded clique immersions, we prove that every graph either has
bounded tree-cut width or admits an immersion of a large wall