48,853 research outputs found

    Observation of spin-orbit magnetoresistance in metallic thin films on magnetic insulators

    Full text link
    A magnetoresistance effect induced by the Rashba spin-orbit interaction was predicted, but not yet observed, in bilayers consisting of normal metal and ferromagnetic insulator. Here, we present an experimental observation of this new type of spin-orbit magnetoresistance (SOMR) effect in a bilayer structure Cu[Pt]/Y3Fe5O12 (YIG), where the Cu/YIG interface is decorated with nanosize Pt islands. This new MR is apparently not caused by the bulk spin-orbit interaction because of the negligible spin-orbit interaction in Cu and the discontinuity of the Pt islands. This SOMR disappears when the Pt islands are absent or located away from the Cu/YIG interface, therefore we can unambiguously ascribe it to the Rashba spin-orbit interaction at the interface enhanced by the Pt decoration. The numerical Boltzmann simulations are consistent with the experimental SOMR results in the angular dependence of magnetic field and the Cu thickness dependence. Our finding demonstrates the realization of the spin manipulation by interface engineering.Comment: 12 pages, 4 figures, 14 pages in supplementary. To appear on Science Advance

    Imaging Spin Reorientation Transitions in Consecutive Atomic Co layers

    Full text link
    By means of spin-polarized low-energy electron microscopy (SPLEEM) we show that the magnetic easy-axis of one to three atomic-layer thick cobalt films on ruthenium crystals changes its orientation twice during deposition: one-monolayer and three-monolayer thick films are magnetized in-plane, while two-monolayer films are magnetized out-of-plane, with a Curie temperature well above room temperature. Fully-relativistic calculations based on the Screened Korringa-Kohn-Rostoker (SKKR) method demonstrate that only for two-monolayer cobalt films the interplay between strain, surface and interface effects leads to perpendicular magnetization.Comment: 5 pages, 4 figures. Presented at the 2005 ECOSS conference in Berlin, and at the 2005 Fall meeting of the MRS. Accepted for publication at Phys. Rev. Lett., after minor change

    Curvy surface conformal ultra-thin transfer printed Si optoelectronic penetrating microprobe arrays

    Get PDF
    Penetrating neural probe arrays are powerful bio-integrated devices for studying basic neuroscience and applied neurophysiology, underlying neurological disorders, and understanding and regulating animal and human behavior. This paper presents a penetrating microprobe array constructed in thin and flexible fashion, which can be seamlessly integrated with the soft curvy substances. The function of the microprobes is enabled by transfer printed ultra-thin Si optoelectronics. As a proof-of-concept device, microprobe array with Si photodetector arrays are demonstrated and their capability of mapping the photo intensity in space are illustrated. The design strategies of utilizing thin polyimide based microprobes and supporting substrate, and employing the heterogeneously integrated thin optoelectronics are keys to accomplish such a device. The experimental and theoretical investigations illustrate the materials, manufacturing, mechanical and optoelectronic aspects of the device. While this paper primarily focuses on the device platform development, the associated materials, manufacturing technologies, and device design strategy are applicable to more complex and multi-functionalities in penetrating probe array-based neural interfaces and can also find potential utilities in a wide range of bio-integrated systems

    The Dendritic magnetic avalanches in carbon-free MgB2_2 thin films with and without a deposited Au layer

    Full text link
    From the magneto optics images (MOI), the dendritic magnetic avalanche is known to appear dominantly for thin films of the newly discovered MgB2_2. To clarify the origin of this phenomenon, we studied in detail the MOI of carbon-free MgB2_2 thin films with and without a deposited gold layer. The MOI indicated carbon contamination was not the main source of the avalanche. The MOI clearly showed that the deposition of metallic gold deposition on top of a MgB2_2 thin film improved its thermal stability and suppressed the sudden appearance of the dendritic flux avalanche. This is consistent with the previous observation of flux noise in the magnetization.Comment: 9 pages, 4 figeure

    Mapping the spin-dependent electron reflectivity of Fe and Co ferromagnetic thin films

    Full text link
    Spin Polarized Low Energy Electron Microscopy is used as a spin dependent spectroscopic probe to study the spin dependent specular reflection of a polarized electron beam from two different magnetic thin film systems: Fe/W(110) and Co/W(110). The reflectivity and spin-dependent exchange-scattering asymmetry are studied as a function of electron kinetic energy and film thickness, as well as the time dependence. The largest value of the figure of merit for spin polarimetry is observed for a 5 monolayer thick film of Co/W(110) at an electron kinetic energy of 2eV. This value is 2 orders of magnitude higher than previously obtained with state of the art Mini-Mott polarimeter. We discuss implications of our results for the development of an electron-spin-polarimeter using the exchange-interaction at low energy.Comment: 5 pages, 4 figure

    Tunable plasmonic resonances in highly porous nano-bamboo Si-Au superlattice-type thin films

    Get PDF
    We report on fabrication of spatially-coherent columnar plasmonic nanostructure superlattice-type thin films with high porosity and strong optical anisotropy using glancing angle deposition. Subsequent and repeated depositions of silicon and gold lead to nanometer-dimension subcolumns with controlled lengths. The superlattice-type columns resemble bamboo structures where smaller column sections of gold form junctions sandwiched between larger silicon column sections ("nano-bamboo"). We perform generalized spectroscopic ellipsometry measurements and finite element method computations to elucidate the strongly anisotropic optical properties of the highly-porous nano-bamboo structures. The occurrence of a strongly localized plasmonic mode with displacement pattern reminiscent of a dark quadrupole mode is observed in the vicinity of the gold subcolumns. We demonstrate tuning of this quadrupole-like mode frequency within the near-infrared spectral range by varying the geometry of the nano-bamboo structure. In addition, coupled-plasmon-like and inter-band transition-like modes occur in the visible and ultra-violet spectral regions, respectively. We elucidate an example for the potential use of the nano-bamboo structures as a highly porous plasmonic sensor with optical read out sensitivity to few parts-per-million solvent levels in water
    corecore