283 research outputs found

    The State of Artificial Intelligence in Medical Imaging

    Get PDF
    This study explores the current state of Artificial Intelligence in medical imaging and provides an accessible assessment of how radiologists perceive the emerging technologies. Throughout the research, we analyze different aspects such as the adoption rate of Artificial Intelligence or the performance of state-of-the-art models, and we identify some of the significant barriers that prevent a wider adoption, such as the lack of collaboration between radiologists and computer scientists. Additionally, we provide a brief theoretical background that explains how deep learning works and how it can be helpful in medical imaging. We describe the architecture of a binary classifier in detail and exemplify several measurements that can be used to evaluate an AI model. The paper concludes with our personal opinion on the subject

    Technomoral Affordances of Artificial Intelligence in Data-Driven Systems

    Get PDF
    In a panel session on Data, Platforms, and Policies, participants examined the state of artificial intelligence (AI) in the Arab states and discussed the responsible use of AI in data-driven systems in government, health care, education, and industry

    The state of artificial intelligence-based FDA-approved medical devices and algorithms:an online database

    Get PDF
    At the beginning of the artificial intelligence (AI)/machine learning (ML) era, the expectations are high, and experts foresee that AI/ML shows potential for diagnosing, managing and treating a wide variety of medical conditions. However, the obstacles for implementation of AI/ML in daily clinical practice are numerous, especially regarding the regulation of these technologies. Therefore, we provide an insight into the currently available AI/ML-based medical devices and algorithms that have been approved by the US Food & Drugs Administration (FDA). We aimed to raise awareness of the importance of regulatory bodies, clearly stating whether a medical device is AI/ML based or not. Cross-checking and validating all approvals, we identified 64 AI/ML based, FDA approved medical devices and algorithms. Out of those, only 29 (45%) mentioned any AI/ML-related expressions in the official FDA announcement. The majority (85.9%) was approved by the FDA with a 510(k) clearance, while 8 (12.5%) received de novo pathway clearance and one (1.6%) premarket approval (PMA) clearance. Most of these technologies, notably 30 (46.9%), 16 (25.0%), and 10 (15.6%) were developed for the fields of Radiology, Cardiology and Internal Medicine/General Practice respectively. We have launched the first comprehensive and open access database of strictly AI/ML-based medical technologies that have been approved by the FDA. The database will be constantly updated

    The Artificial Intelligence Course at the Faculty of Computer Science in the Polytechnic University of Madrid

    Get PDF
    This paper presents the experience of teaching an Artificial Intelligence course at the Faculty of Computer Science in the Polytechnic University of Madrid, Spain. The objective of this course is to introduce the students to this field, to prepare them to contribute to the evolution of the technology, and to qualify them to solve problems in the real world using Artificial Intelligence technology. The curriculum of the Artificial Intelligence course, which is integrated into the Artificial Intelligence Department's program, allows us to educate the students in this sense using the monographic teaching method

    What is science for? The Lighthill report on artificial intelligence reinterpreted

    Get PDF
    This paper uses a case study of a 1970s controversy in artificial-intelligence (AI) research to explore how scientists understand the relationships between research and practical applications. It is part of a project that seeks to map such relationships in order to enable better policy recommendations to be grounded empirically through historical evidence. In 1972 the mathematician James Lighthill submitted a report, published in 1973, on the state of artificial-intelligence research under way in the United Kingdom. The criticisms made in the report have been held to be a major cause behind the dramatic slowing down (subsequently called an ‘AI winter’) of such research. This paper has two aims, one narrow and one broad. The narrow aim is to inquire into the causes, motivations and content of the Lighthill report. I argue that behind James Lighthill's criticisms of a central part of artificial intelligence was a principle he held throughout his career – that the best research was tightly coupled to practical problem solving. I also show that the Science Research Council provided a preliminary steer to the direction of this apparently independent report. The broader aim of the paper is to map some of the ways that scientists (and in Lighthill's case, a mathematician) have articulated and justified relationships between research and practical, real-world problems, an issue previously identified as central to historical analysis of modern science. The paper therefore offers some deepened historical case studies of the processes identified in Agar's ‘working-worlds’ model

    Intensity-based image registration using multiple distributed agents

    Get PDF
    Image registration is the process of geometrically aligning images taken from different sensors, viewpoints or instances in time. It plays a key role in the detection of defects or anomalies for automated visual inspection. A multiagent distributed blackboard system has been developed for intensity-based image registration. The images are divided into segments and allocated to agents on separate processors, allowing parallel computation of a similarity metric that measures the degree of likeness between reference and sensed images after the application of a transform. The need for a dedicated control module is removed by coordination of agents via the blackboard. Tests show that additional agents increase speed, provided the communication capacity of the blackboard is not saturated. The success of the approach in achieving registration, despite significant misalignment of the original images, is demonstrated in the detection of manufacturing defects on screen-printed plastic bottles and printed circuit boards

    Artificial intelligence and medical education: a global mixed-methods study of medical students’ perspectives

    Get PDF
    Objective: Medical students, as clinicians and healthcare leaders of the future, are key stakeholders in the clinical roll-out of artificial intelligence-driven technologies. The authors aim to provide the first report on the state of artificial intelligence in medical education globally by exploring the perspectives of medical students. Methods: The authors carried out a mixed-methods study of focus groups and surveys with 128 medical students from 48 countries. The study explored knowledge around artificial intelligence as well as what students wished to learn about artificial intelligence and how they wished to learn this. A combined qualitative and quantitative analysis was used. Results: Support for incorporating teaching on artificial intelligence into core curricula was ubiquitous across the globe, but few students had received teaching on artificial intelligence. Students showed knowledge on the applications of artificial intelligence in clinical medicine as well as on artificial intelligence ethics. They were interested in learning about clinical applications, algorithm development, coding and algorithm appraisal. Hackathon-style projects and multidisciplinary education involving computer science students were suggested for incorporation into the curriculum. Conclusions: Medical students from all countries should be provided teaching on artificial intelligence as part of their curriculum to develop skills and knowledge around artificial intelligence to ensure a patient-centred digital future in medicine. This teaching should focus on the applications of artificial intelligence in clinical medicine. Students should also be given the opportunity to be involved in algorithm development. Students in low- and middle-income countries require the foundational technology as well as robust teaching on artificial intelligence to ensure that they can drive innovation in their healthcare settings

    Privacy-preserving scoring of tree ensembles : a novel framework for AI in healthcare

    Get PDF
    Machine Learning (ML) techniques now impact a wide variety of domains. Highly regulated industries such as healthcare and finance have stringent compliance and data governance policies around data sharing. Advances in secure multiparty computation (SMC) for privacy-preserving machine learning (PPML) can help transform these regulated industries by allowing ML computations over encrypted data with personally identifiable information (PII). Yet very little of SMC-based PPML has been put into practice so far. In this paper we present the very first framework for privacy-preserving classification of tree ensembles with application in healthcare. We first describe the underlying cryptographic protocols that enable a healthcare organization to send encrypted data securely to a ML scoring service and obtain encrypted class labels without the scoring service actually seeing that input in the clear. We then describe the deployment challenges we solved to integrate these protocols in a cloud based scalable risk-prediction platform with multiple ML models for healthcare AI. Included are system internals, and evaluations of our deployment for supporting physicians to drive better clinical outcomes in an accurate, scalable, and provably secure manner. To the best of our knowledge, this is the first such applied framework with SMC-based privacy-preserving machine learning for healthcare

    Foreword

    Get PDF
    • …
    corecore