1,104 research outputs found

    Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents

    Get PDF
    We use the conformal bootstrap to perform a precision study of the operator spectrum of the critical 3d Ising model. We conjecture that the 3d Ising spectrum minimizes the central charge c in the space of unitary solutions to crossing symmetry. Because extremal solutions to crossing symmetry are uniquely determined, we are able to precisely reconstruct the first several Z2-even operator dimensions and their OPE coefficients. We observe that a sharp transition in the operator spectrum occurs at the 3d Ising dimension Delta_sigma=0.518154(15), and find strong numerical evidence that operators decouple from the spectrum as one approaches the 3d Ising point. We compare this behavior to the analogous situation in 2d, where the disappearance of operators can be understood in terms of degenerate Virasoro representations.Comment: 55 pages, many figures; v2 - refs and comments added, to appear in a special issue of J.Stat.Phys. in memory of Kenneth Wilso

    Supersonic quantum communication

    Full text link
    When locally exciting a quantum lattice model, the excitation will propagate through the lattice. The effect is responsible for a wealth of non-equilibrium phenomena, and has been exploited to transmit quantum information through spin chains. It is a commonly expressed belief that for local Hamiltonians, any such propagation happens at a finite "speed of sound". Indeed, the Lieb-Robinson theorem states that in spin models, all effects caused by a perturbation are limited to a causal cone defined by a constant speed, up to exponentially small corrections. In this work we show that for translationally invariant bosonic models with nearest-neighbor interactions, this belief is incorrect: We prove that one can encounter excitations which accelerate under the natural dynamics of the lattice and allow for reliable transmission of information faster than any finite speed of sound. The effect is only limited by the model's range of validity (eventually by relativity). It also implies that in non-equilibrium dynamics of strongly correlated bosonic models far-away regions may become quickly entangled, suggesting that their simulation may be much harder than that of spin chains even in the low energy sector.Comment: 4+3 pages, 1 figure, some material added, typographic error fixe

    Mott Insulators, No-Double-Occupancy, and Non-Abelian Superconductivity

    Full text link
    SU(4) dynamical symmetry is shown to imply a no-double-occupancy constraint on the minimal symmetry description of antiferromagnetism and d-wave superconductivity. This implies a maximum doping fraction of 1/4 for cuprates and provides a microscopic critique of the projected SO(5) model. We propose that SU(4) superconductors are representative of a class of compounds that we term non-abelian superconductors. We further suggest that non-abelian superconductors may exist having SU(4) symmetry and therefore cuprate-like dynamics, but without d-wave hybridization.Comment: 4 pages, 2 figure

    The Conformal Bootstrap: Theory, Numerical Techniques, and Applications

    Full text link
    Conformal field theories have been long known to describe the fascinating universal physics of scale invariant critical points. They describe continuous phase transitions in fluids, magnets, and numerous other materials, while at the same time sit at the heart of our modern understanding of quantum field theory. For decades it has been a dream to study these intricate strongly coupled theories nonperturbatively using symmetries and other consistency conditions. This idea, called the conformal bootstrap, saw some successes in two dimensions but it is only in the last ten years that it has been fully realized in three, four, and other dimensions of interest. This renaissance has been possible both due to significant analytical progress in understanding how to set up the bootstrap equations and the development of numerical techniques for finding or constraining their solutions. These developments have led to a number of groundbreaking results, including world record determinations of critical exponents and correlation function coefficients in the Ising and O(N)O(N) models in three dimensions. This article will review these exciting developments for newcomers to the bootstrap, giving an introduction to conformal field theories and the theory of conformal blocks, describing numerical techniques for the bootstrap based on convex optimization, and summarizing in detail their applications to fixed points in three and four dimensions with no or minimal supersymmetry.Comment: 81 pages, double column, 58 figures; v3: updated references, minor typos correcte

    Topological aspects of the critical three-state Potts model

    Full text link
    We explore the topological defects of the critical three-state Potts spin system on the torus, Klein bottle and cylinder. A complete characterization is obtained by breaking down the Fuchs-Runkel-Schweigert construction of 2d rational CFT to the lattice setting. This is done by applying the strange correlator prescription to the recently obtained tensor network descriptions of string-net ground states in terms of bimodule categories [Lootens, Fuchs, Haegeman, Schweigert, Verstraete, SciPost Phys. 10, 053 (2021)]. The symmetries are represented by matrix product operators (MPO), as well as intertwiners between the diagonal tetracritical Ising model and the non-diagonal three-state Potts model. Our categorical construction lifts the global transfer matrix symmetries and intertwiners, previously obtained by solving Yang-Baxter equations, to MPO symmetries and intertwiners that can be locally deformed, fused and split. This enables the extraction of conformal characters from partition functions and yields a comprehensive picture of all boundary conditions.Comment: 71 pages, many figures, includes supplementary materia

    The saga of finite equational bases over BCCSP

    Get PDF
    corecore