1,025 research outputs found

    Farey Graphs as Models for Complex Networks

    Get PDF
    Farey sequences of irreducible fractions between 0 and 1 can be related to graph constructions known as Farey graphs. These graphs were first introduced by Matula and Kornerup in 1979 and further studied by Colbourn in 1982 and they have many interesting properties: they are minimally 3-colorable, uniquely Hamiltonian, maximally outerplanar and perfect. In this paper we introduce a simple generation method for a Farey graph family, and we study analytically relevant topological properties: order, size, degree distribution and correlation, clustering, transitivity, diameter and average distance. We show that the graphs are a good model for networks associated with some complex systems.Comment: Definitive version published in Theoretical Computer Scienc

    Algebraic Characterization of Uniquely Vertex Colorable Graphs

    Full text link
    The study of graph vertex colorability from an algebraic perspective has introduced novel techniques and algorithms into the field. For instance, it is known that kk-colorability of a graph GG is equivalent to the condition 1∈IG,k1 \in I_{G,k} for a certain ideal I_{G,k} \subseteq \k[x_1, ..., x_n]. In this paper, we extend this result by proving a general decomposition theorem for IG,kI_{G,k}. This theorem allows us to give an algebraic characterization of uniquely kk-colorable graphs. Our results also give algorithms for testing unique colorability. As an application, we verify a counterexample to a conjecture of Xu concerning uniquely 3-colorable graphs without triangles.Comment: 15 pages, 2 figures, print version, to appear J. Comb. Th. Ser.

    Farey graphs as models for complex networks

    Get PDF
    Farey sequences of irreducible fractions between 0 and 1 can be related to graph constructions known as Farey graphs. These graphs were first introduced by Matula and Kornerup in 1979 and further studied by Colbourn in 1982 and they have many interesting properties: they are minimally 3-colorable, uniquely Hamiltonian, maximally outerplanar and perfect. In this paper we introduce a simple generation method for a Farey graph family, and we study analytically relevant topological properties: order, size, degree distribution and correlation, clustering, transitivity, diameter and average distance. We show that the graphs are a good model for networks associated with some complex systems.Peer Reviewe
    • …
    corecore