10,211 research outputs found

    Gabor analysis over finite Abelian groups

    Full text link
    The topic of this paper are (multi-window) Gabor frames for signals over finite Abelian groups, generated by an arbitrary lattice within the finite time-frequency plane. Our generic approach covers simultaneously multi-dimensional signals as well as non-separable lattices. The main results reduce to well-known fundamental facts about Gabor expansions of finite signals for the case of product lattices, as they have been given by Qiu, Wexler-Raz or Tolimieri-Orr, Bastiaans and Van-Leest, among others. In our presentation a central role is given to spreading function of linear operators between finite-dimensional Hilbert spaces. Another relevant tool is a symplectic version of Poisson's summation formula over the finite time-frequency plane. It provides the Fundamental Identity of Gabor Analysis.In addition we highlight projective representations of the time-frequency plane and its subgroups and explain the natural connection to twisted group algebras. In the finite-dimensional setting these twisted group algebras are just matrix algebras and their structure provides the algebraic framework for the study of the deeper properties of finite-dimensional Gabor frames.Comment: Revised version: two new sections added, many typos fixe

    Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

    Get PDF
    Abstract: Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well

    Co-compact Gabor systems on locally compact abelian groups

    Full text link
    In this work we extend classical structure and duality results in Gabor analysis on the euclidean space to the setting of second countable locally compact abelian (LCA) groups. We formulate the concept of rationally oversampling of Gabor systems in an LCA group and prove corresponding characterization results via the Zak transform. From these results we derive non-existence results for critically sampled continuous Gabor frames. We obtain general characterizations in time and in frequency domain of when two Gabor generators yield dual frames. Moreover, we prove the Walnut and Janssen representation of the Gabor frame operator and consider the Wexler-Raz biorthogonality relations for dual generators. Finally, we prove the duality principle for Gabor frames. Unlike most duality results on Gabor systems, we do not rely on the fact that the translation and modulation groups are discrete and co-compact subgroups. Our results only rely on the assumption that either one of the translation and modulation group (in some cases both) are co-compact subgroups of the time and frequency domain. This presentation offers a unified approach to the study of continuous and the discrete Gabor frames.Comment: Paper (v2) shortened. To appear in J. Fourier Anal. App
    • …
    corecore