50 research outputs found

    Waste Collection Vehicle Routing Problem: Literature Review

    Get PDF
    Waste generation is an issue which has caused wide public concern in modern societies, not only for the quantitative rise of the amount of waste generated, but also for the increasing complexity of some products and components. Waste collection is a highly relevant activity in the reverse logistics system and how to collect waste in an efficient way is an area that needs to be improved. This paper analyzes the major contribution about Waste Collection Vehicle Routing Problem (WCVRP) in literature. Based on a classification of waste collection (residential, commercial and industrial), firstly the key findings for these three types of waste collection are presented. Therefore, according to the model (Node Routing Problems and Arc Routing problems) used to represent WCVRP, different methods and techniques are analyzed in this paper to solve WCVRP. This paper attempts to serve as a roadmap of research literature produced in the field of WCVRP

    The Tractor and Semitrailer Routing Considering Carbon Dioxide Emissions

    Get PDF
    The incorporation of the minimization of carbon dioxide (CO2) emissions in the VRP is important to logistics companies. The paper deals with the tractor and semitrailer routing problem with full truckload between any two depots of the network; an integer programming model with the objective of minimizing CO2 emissions per ton-kilometer is proposed. A two-stage approach with the same core steps of the simulated annealing (SA) in both stages is designed. The number of tractors is provided in the first stage and the CO2 emissions per ton-kilometer are then optimized in the second stage. Computational experiments on small-scale randomly generated instances supported the feasibility and validity of the heuristic algorithm. To a practical-scale problem, the SA algorithm can provide advice on the number of tractors, the routes, and the location of the central depot to realize CO2 emissions decrease

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Optimization of municipal solid waste collection routes based on the containers' fill status data

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Assessing dynamic models for high priority waste collection in smart cities

    Get PDF
    Waste Management (WM) represents an important part of Smart Cities (SCs) with significant impact on modern societies. WM involves a set of processes ranging from waste collection to the recycling of the collected materials. The proliferation of sensors and actuators enable the new era of Internet of Things (IoT) that can be adopted in SCs and help in WM. Novel approaches that involve dynamic routing models combined with the IoT capabilities could provide solutions that outperform existing models. In this paper, we focus on a SC where a number of collection bins are located in different areas with sensors attached to them. We study a dynamic waste collection architecture, which is based on data retrieved by sensors. We pay special attention to the possibility of immediate WM service in high priority areas, e.g., schools or hospitals where, possibly, the presence of dangerous waste or the negative effects on human quality of living impose the need for immediate collection. This is very crucial when we focus on sensitive groups of citizens like pupils, elderly or people living close to areas where dangerous waste is rejected. We propose novel algorithms aiming at providing efficient and scalable solutions to the dynamic waste collection problem through the management of the trade-off between the immediate collection and its cost. We describe how the proposed system effectively responds to the demand as realized by sensor observations and alerts originated in high priority areas. Our aim is to minimize the time required for serving high priority areas while keeping the average expected performance at high level. Comprehensive simulations on top of the data retrieved by a SC validate the proposed algorithms on both quantitative and qualitative criteria which are adopted to analyze their strengths and weaknesses. We claim that, local authorities could choose the model that best matches their needs and resources of each city

    The Effects of the Tractor and Semitrailer Routing Problem on Mitigation of Carbon Dioxide Emissions

    Get PDF
    The incorporation of CO2 emissions minimization in the vehicle routing problem (VRP) is of critical importance to enterprise practice. Focusing on the tractor and semitrailer routing problem with full truckloads between any two terminals of the network, this paper proposes a mathematical programming model with the objective of minimizing CO2 emissions per ton-kilometer. A simulated annealing (SA) algorithm is given to solve practical-scale problems. To evaluate the performance of the proposed algorithm, a lower bound is developed. Computational experiments on various problems generated randomly and a realistic instance are conducted. The results show that the proposed methods are effective and the algorithm can provide reasonable solutions within an acceptable computational time

    Metaheuristics for the waste collection vehicle routing problem with time windows, driver rest period and multiple disposal facilities

    Get PDF
    In this problem there is a set of waste disposal facilities, a set of customers at which waste is collected and an unlimited number of homogeneous vehicles based at a single depot.Empty vehicles leave the depot and collect waste from customers, emptying themselves at the waste disposal facilities as and when necessary.Vehicles return to the depot empty.We take into consideration time windows associated with customers, disposal facilities and the depot. We also have a driver rest period.The problem is solved heuristically.A neighbour set is defined for each customer as the set of customers that are close, but with compatible time windows. A procedure that attempts to fully utilise a vehicle is used to obtain an initial solution, with this initial solution being improved using an interchange procedure.We present two metaheuristic algorithms using tabu search and variable neighbourhood search that are based around the neighbour sets.We also present a metaheuristic based on variable neighbourhood tabu search, where the variable neighbourhood is searched via tabu search.Computational results are presented for publicly available waste collection problems involving up to 2092 customers and 19 waste disposal facilities, which indicate that our algorithms produce better quality solutions than previous work presented in the literature
    corecore