15,738 research outputs found

    Network-aware design-space exploration of a power-efficient embedded application

    Get PDF
    The paper presents the design and multi-parameter optimization of a networked embedded application for the health-care domain. Several hardware, software, and application parameters, such as clock frequency, sensor sampling rate, data packet rate, are tuned at design- and run-time according to application specifications and operating conditions to optimize hardware requirements, packet loss, power consumption. Experimental results show that further power efficiency can be achieved by considering also communication aspects during design space exploratio

    PhyNetLab: An IoT-Based Warehouse Testbed

    Full text link
    Future warehouses will be made of modular embedded entities with communication ability and energy aware operation attached to the traditional materials handling and warehousing objects. This advancement is mainly to fulfill the flexibility and scalability needs of the emerging warehouses. However, it leads to a new layer of complexity during development and evaluation of such systems due to the multidisciplinarity in logistics, embedded systems, and wireless communications. Although each discipline provides theoretical approaches and simulations for these tasks, many issues are often discovered in a real deployment of the full system. In this paper we introduce PhyNetLab as a real scale warehouse testbed made of cyber physical objects (PhyNodes) developed for this type of application. The presented platform provides a possibility to check the industrial requirement of an IoT-based warehouse in addition to the typical wireless sensor networks tests. We describe the hardware and software components of the nodes in addition to the overall structure of the testbed. Finally, we will demonstrate the advantages of the testbed by evaluating the performance of the ETSI compliant radio channel access procedure for an IoT warehouse

    Wearable flexible lightweight modular RFID tag with integrated energy harvester

    Get PDF
    A novel wearable radio frequency identification (RFID) tag with sensing, processing, and decision-taking capability is presented for operation in the 2.45-GHz RFID superhigh frequency (SHF) band. The tag is powered by an integrated light harvester, with a flexible battery serving as an energy buffer. The proposed active tag features excellent wearability, very high read range, enhanced functionality, flexible interfacing with diverse low-power sensors, and extended system autonomy through an innovative holistic microwave system design paradigm that takes antenna design into consideration from the very early stages. Specifically, a dedicated textile shorted circular patch antenna with monopolar radiation pattern is designed and optimized for highly efficient and stable operation within the frequency band of operation. In this process, the textile antenna's functionality is augmented by reusing its surface as an integration platform for light-energy-harvesting, sensing, processing, and transceiver hardware, without sacrificing antenna performance or the wearer's comfort. The RFID tag is validated by measuring its stand-alone and on-body characteristics in free-space conditions. Moreover, measurements in a real-world scenario demonstrate an indoor read range up to 23 m in nonline-of-sight indoor propagation conditions, enabling interrogation by a reader situated in another room. In addition, the RFID platform only consumes 168.3 mu W, when sensing and processing are performed every 60 s

    EPSRC IMPACT Exhibition

    Get PDF
    This exhibition was conceived by Dunne (PI) and comprised 16 mixed-media speculative design research projects. It marked the culmination of an EPSRC-funded initiative also partly supported by NESTA. Dunne supervised and then curated the projects by staff, graduates and students of the RCA Design Interactions programme. Each was conducted in collaboration with an external research partner organisation already supported by the EPSRC. The topics covered ranged from renewable energy devices and security technologies to the emerging fields of synthetic biology and quantum computing. Dunne and an advisory panel from EPSRC and NESTA selected themes on the basis of diversity of topic, design opportunities, intellectual and creative challenges, and public relevance. Dunne invited the designers to take a radical, interrogative approach, exploring the social, ethical and political implications of the research. Each designer visited the relevant science lab, consulted with the scientists throughout the project, and participated in a one-day workshop hosted by NESTA between scientists and designers on such forms of collaboration. Designers carried out literature, journal, and project surveys before developing their projects through iterative prototypes. The exhibition, held at the RCA in 2010, was considered by EPSRC to offer a powerful insight into how today’s research might transform our experience of the world. It was reviewed in the Guardian (2010), Wired (2010) and Design Week (2010). Dunne presented ‘IMPACT!’ in conferences including the IDA Congress, ‘Design at the Edges’, Taipei (2011) and at the Wellcome Trust, London (2011). He gave a related lecture to researchers at Microsoft Research Asia, Beijing (2011). Individual exhibits from the project featured in exhibitions: Museum of Modern Art (2011), National Museum of China (2011); Z33 (2010–11); Wellcome Trust (2010–11); Saint-Étienne International Design Biennial (2010); Ars Electronica (2010); The Times Cheltenham Science Festival (2010); and V2_, Institute for the Unstable Media (2010)

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care
    • …
    corecore