12,398 research outputs found

    The Philosophical Case for Robot Friendship

    Get PDF
    Friendship is an important part of the good life. While many roboticists are eager to create friend-like robots, many philosophers and ethicists are concerned. They argue that robots cannot really be our friends. Robots can only fake the emotional and behavioural cues we associate with friendship. Consequently, we should resist the drive to create robot friends. In this article, I argue that the philosophical critics are wrong. Using the classic virtue-ideal of friendship, I argue that robots can plausibly be considered our virtue friends - that to do so is philosophically reasonable. Furthermore, I argue that even if you do not think that robots can be our virtue friends, they can fulfil other important friendship roles, and can complement and enhance the virtue friendships between human beings

    From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 3)

    Get PDF
    This third paper locates the synthetic neurorobotics research reviewed in the second paper in terms of themes introduced in the first paper. It begins with biological non-reductionism as understood by Searle. It emphasizes the role of synthetic neurorobotics studies in accessing the dynamic structure essential to consciousness with a focus on system criticality and self, develops a distinction between simulated and formal consciousness based on this emphasis, reviews Tani and colleagues' work in light of this distinction, and ends by forecasting the increasing importance of synthetic neurorobotics studies for cognitive science and philosophy of mind going forward, finally in regards to most- and myth-consciousness

    Robot Betrayal: a guide to the ethics of robotic deception

    Get PDF
    If a robot sends a deceptive signal to a human user, is this always and everywhere an unethical act, or might it sometimes be ethically desirable? Building upon previous work in robot ethics, this article tries to clarify and refine our understanding of the ethics of robotic deception. It does so by making three arguments. First, it argues that we need to distinguish between three main forms of robotic deception (external state deception; superficial state deception; and hidden state deception) in order to think clearly about its ethics. Second, it argues that the second type of deception – superficial state deception – is not best thought of as a form of deception, even though it is frequently criticised as such. And third, it argues that the third type of deception is best understood as a form of betrayal because doing so captures the unique ethical harm to which it gives rise, and justifies special ethical protections against its use

    Embodied cognition: A field guide

    Get PDF
    The nature of cognition is being re-considered. Instead of emphasizing formal operations on abstract symbols, the new approach foregrounds the fact that cognition is, rather, a situated activity, and suggests that thinking beings ought therefore be considered first and foremost as acting beings. The essay reviews recent work in Embodied Cognition, provides a concise guide to its principles, attitudes and goals, and identifies the physical grounding project as its central research focus

    The roots of self-awareness

    Get PDF
    In this paper we provide an account of the structural underpinnings of self-awareness. We offer both an abstract, logical account-by way of suggestions for how to build a genuinely self-referring artificial agent-and a biological account, via a discussion of the role of somatoception in supporting and structuring self-awareness more generally. Central to the account is a discussion of the necessary motivational properties of self-representing mental tokens, in light of which we offer a novel definition of self-representation. We also discuss the role of such tokens in organizing self-specifying information, which leads to a naturalized restatement of the guarantee that introspective awareness is immune to error due to mis-identification of the subject

    Robot life: simulation and participation in the study of evolution and social behavior.

    Get PDF
    This paper explores the case of using robots to simulate evolution, in particular the case of Hamilton's Law. The uses of robots raises several questions that this paper seeks to address. The first concerns the role of the robots in biological research: do they simulate something (life, evolution, sociality) or do they participate in something? The second question concerns the physicality of the robots: what difference does embodiment make to the role of the robot in these experiments. Thirdly, how do life, embodiment and social behavior relate in contemporary biology and why is it possible for robots to illuminate this relation? These questions are provoked by a strange similarity that has not been noted before: between the problem of simulation in philosophy of science, and Deleuze's reading of Plato on the relationship of ideas, copies and simulacra

    Influence Of Task-role Mental Models On Human Interpretation Of Robot Motion Behavior

    Get PDF
    The transition in robotics from tools to teammates has begun. However, the benefit autonomous robots provide will be diminished if human teammates misinterpret robot behaviors. Applying mental model theory as the organizing framework for human understanding of robots, the current empirical study examined the influence of task-role mental models of robots on the interpretation of robot motion behaviors, and the resulting impact on subjective ratings of robots. Observers (N = 120) were exposed to robot behaviors that were either congruent or incongruent with their task-role mental model, by experimental manipulation of preparatory robot task-role information to influence mental models (i.e., security guard, groundskeeper, or no information), the robot\u27s actual task-role behaviors (i.e., security guard or groundskeeper), and the order in which these robot behaviors were presented. The results of the research supported the hypothesis that observers with congruent mental models were significantly more accurate in interpreting the motion behaviors of the robot than observers without a specific mental model. Additionally, an incongruent mental model, under certain circumstances, significantly hindered an observer\u27s interpretation accuracy, resulting in subjective sureness of inaccurate interpretations. The strength of the effects that mental models had on the interpretation and assessment of robot behaviors was thought to have been moderated by the ease with which a particular mental model could reasonably explain the robot\u27s behavior, termed mental model applicability. Finally, positive associations were found between differences in observers\u27 interpretation accuracy and differences in subjective ratings of robot intelligence, safety, and trustworthiness. The current research offers implications for the relationships between mental model components, as well as implications for designing robot behaviors to appear more transparent, or opaque, to humans

    A New Constructivist AI: From Manual Methods to Self-Constructive Systems

    Get PDF
    The development of artificial intelligence (AI) systems has to date been largely one of manual labor. This constructionist approach to AI has resulted in systems with limited-domain application and severe performance brittleness. No AI architecture to date incorporates, in a single system, the many features that make natural intelligence general-purpose, including system-wide attention, analogy-making, system-wide learning, and various other complex transversal functions. Going beyond current AI systems will require significantly more complex system architecture than attempted to date. The heavy reliance on direct human specification and intervention in constructionist AI brings severe theoretical and practical limitations to any system built that way. One way to address the challenge of artificial general intelligence (AGI) is replacing a top-down architectural design approach with methods that allow the system to manage its own growth. This calls for a fundamental shift from hand-crafting to self-organizing architectures and self-generated code – what we call a constructivist AI approach, in reference to the self-constructive principles on which it must be based. Methodologies employed for constructivist AI will be very different from today’s software development methods; instead of relying on direct design of mental functions and their implementation in a cog- nitive architecture, they must address the principles – the “seeds” – from which a cognitive architecture can automatically grow. In this paper I describe the argument in detail and examine some of the implications of this impending paradigm shift
    corecore