43,267 research outputs found

    The range of non-linear natural polynomials cannot be context-free

    Get PDF
    Suppose that some polynomial ff with rational coefficients takes only natural values at natural numbers, i.e., L={f(n)∣n∈N}⊂NL=\{f(n)\mid n\in \mathbb N\}\subset\mathbb N. We show that the base-qq representation of LL is a context-free language if and only if ff is linear, answering a question of Shallit. The proof is based on a new criterion for context-freeness, which is a combination of the Interchange lemma and a generalization of the Pumping lemma.Comment: This paper should be assigned to cs.FL, but I'm not endorsed over ther

    The range of non-linear natural polynomials cannot be context-free

    Get PDF
    summary:Suppose that some polynomial ff with rational coefficients takes only natural values at natural numbers, i. e., L={f(n)∣n∈N}⊆NL=\{f(n)\mid n\in {\mathbb N}\}\subseteq {\mathbb N}. We show that the base-qq representation of LL is a context-free language if and only if ff is linear, answering a question of Shallit. The proof is based on a new criterion for context-freeness, which is a combination of the Interchange lemma and a generalization of the Pumping lemma

    Separations of Matroid Freeness Properties

    Full text link
    Properties of Boolean functions on the hypercube invariant with respect to linear transformations of the domain are among the most well-studied properties in the context of property testing. In this paper, we study the fundamental class of linear-invariant properties called matroid freeness properties. These properties have been conjectured to essentially coincide with all testable linear-invariant properties, and a recent sequence of works has established testability for increasingly larger subclasses. One question left open, however, is whether the infinitely many syntactically different properties recently shown testable in fact correspond to new, semantically distinct ones. This is a crucial issue since it has also been shown that there exist subclasses of these properties for which an infinite set of syntactically different representations collapse into one of a small, finite set of properties, all previously known to be testable. An important question is therefore to understand the semantics of matroid freeness properties, and in particular when two syntactically different properties are truly distinct. We shed light on this problem by developing a method for determining the relation between two matroid freeness properties P and Q. Furthermore, we show that there is a natural subclass of matroid freeness properties such that for any two properties P and Q from this subclass, a strong dichotomy must hold: either P is contained in Q or the two properties are "well separated." As an application of this method, we exhibit new, infinite hierarchies of testable matroid freeness properties such that at each level of the hierarchy, there are functions that are far from all functions lying in lower levels of the hierarchy. Our key technical tool is an apparently new notion of maps between linear matroids, called matroid homomorphisms, that might be of independent interest

    Aspects of Non-commutative Function Theory

    Get PDF
    We discuss non commutative functions, which naturally arise when dealing with functions of more than one matrix variable

    Polynomial Interpretations over the Natural, Rational and Real Numbers Revisited

    Full text link
    Polynomial interpretations are a useful technique for proving termination of term rewrite systems. They come in various flavors: polynomial interpretations with real, rational and integer coefficients. As to their relationship with respect to termination proving power, Lucas managed to prove in 2006 that there are rewrite systems that can be shown polynomially terminating by polynomial interpretations with real (algebraic) coefficients, but cannot be shown polynomially terminating using polynomials with rational coefficients only. He also proved the corresponding statement regarding the use of rational coefficients versus integer coefficients. In this article we extend these results, thereby giving the full picture of the relationship between the aforementioned variants of polynomial interpretations. In particular, we show that polynomial interpretations with real or rational coefficients do not subsume polynomial interpretations with integer coefficients. Our results hold also for incremental termination proofs with polynomial interpretations.Comment: 28 pages; special issue of RTA 201

    Every locally characterized affine-invariant property is testable

    Full text link
    Let F = F_p for any fixed prime p >= 2. An affine-invariant property is a property of functions on F^n that is closed under taking affine transformations of the domain. We prove that all affine-invariant property having local characterizations are testable. In fact, we show a proximity-oblivious test for any such property P, meaning that there is a test that, given an input function f, makes a constant number of queries to f, always accepts if f satisfies P, and rejects with positive probability if the distance between f and P is nonzero. More generally, we show that any affine-invariant property that is closed under taking restrictions to subspaces and has bounded complexity is testable. We also prove that any property that can be described as the property of decomposing into a known structure of low-degree polynomials is locally characterized and is, hence, testable. For example, whether a function is a product of two degree-d polynomials, whether a function splits into a product of d linear polynomials, and whether a function has low rank are all examples of degree-structural properties and are therefore locally characterized. Our results depend on a new Gowers inverse theorem by Tao and Ziegler for low characteristic fields that decomposes any polynomial with large Gowers norm into a function of low-degree non-classical polynomials. We establish a new equidistribution result for high rank non-classical polynomials that drives the proofs of both the testability results and the local characterization of degree-structural properties

    Tight polynomial worst-case bounds for loop programs

    Get PDF
    In 2008, Ben-Amram, Jones and Kristiansen showed that for a simple programming language - representing non-deterministic imperative programs with bounded loops, and arithmetics limited to addition and multiplication - it is possible to decide precisely whether a program has certain growth-rate properties, in particular whether a computed value, or the program's running time, has a polynomial growth rate. A natural and intriguing problem was to move from answering the decision problem to giving a quantitative result, namely, a tight polynomial upper bound. This paper shows how to obtain asymptotically-tight, multivariate, disjunctive polynomial bounds for this class of programs. This is a complete solution: whenever a polynomial bound exists it will be found. A pleasant surprise is that the algorithm is quite simple; but it relies on some subtle reasoning. An important ingredient in the proof is the forest factorization theorem, a strong structural result on homomorphisms into a finite monoid
    • 

    corecore