49,652 research outputs found

    Random Oracles in a Quantum World

    Get PDF
    The interest in post-quantum cryptography - classical systems that remain secure in the presence of a quantum adversary - has generated elegant proposals for new cryptosystems. Some of these systems are set in the random oracle model and are proven secure relative to adversaries that have classical access to the random oracle. We argue that to prove post-quantum security one needs to prove security in the quantum-accessible random oracle model where the adversary can query the random oracle with quantum states. We begin by separating the classical and quantum-accessible random oracle models by presenting a scheme that is secure when the adversary is given classical access to the random oracle, but is insecure when the adversary can make quantum oracle queries. We then set out to develop generic conditions under which a classical random oracle proof implies security in the quantum-accessible random oracle model. We introduce the concept of a history-free reduction which is a category of classical random oracle reductions that basically determine oracle answers independently of the history of previous queries, and we prove that such reductions imply security in the quantum model. We then show that certain post-quantum proposals, including ones based on lattices, can be proven secure using history-free reductions and are therefore post-quantum secure. We conclude with a rich set of open problems in this area.Comment: 38 pages, v2: many substantial changes and extensions, merged with a related paper by Boneh and Zhandr

    The quantum correlation between the selection of the problem and that of the solution sheds light on the mechanism of the quantum speed up

    Full text link
    In classical problem solving, there is of course correlation between the selection of the problem on the part of Bob (the problem setter) and that of the solution on the part of Alice (the problem solver). In quantum problem solving, this correlation becomes quantum. This means that Alice contributes to selecting 50% of the information that specifies the problem. As the solution is a function of the problem, this gives to Alice advanced knowledge of 50% of the information that specifies the solution. Both the quadratic and exponential speed ups are explained by the fact that quantum algorithms start from this advanced knowledge.Comment: Earlier version submitted to QIP 2011. Further clarified section 1, "Outline of the argument", submitted to Phys Rev A, 16 page

    A technology based complexity model for reversible Cuccaro ripple-carry adder

    Get PDF
    Reversible logic provides an alternative to classical computing, that may overcome many of the power dissipation problems. The paper presents a simple complexity model, from the study of a cascade of Cuccaro adders processed in standard 0.35 micrometer CMOS technology

    Quantum advantage by relational queries about physically realizable equivalence classes

    Full text link
    Relational quantum queries are sometimes capable to effectively decide between collections of mutually exclusive elementary cases without completely resolving and determining those individual instances. Thereby the set of mutually exclusive elementary cases is effectively partitioned into equivalence classes pertinent to the respective query. In the second part of the paper, we review recent progress in theoretical certifications (relative to the assumptions made) of quantum value indeterminacy as a means to build quantum oracles for randomness.Comment: 8 Pages, one figure, invited contribution to TopHPC2019, Tehran, Iran, April 22-25, 201

    Bicategorical Semantics for Nondeterministic Computation

    Full text link
    We outline a bicategorical syntax for the interaction between public and private information in classical information theory. We use this to give high-level graphical definitions of encrypted communication and secret sharing protocols, including a characterization of their security properties. Remarkably, this makes it clear that the protocols have an identical abstract form to the quantum teleportation and dense coding procedures, yielding evidence of a deep connection between classical and quantum information processing. We also formulate public-key cryptography using our scheme. Specific implementations of these protocols as nondeterministic classical procedures are recovered by applying our formalism in a symmetric monoidal bicategory of matrices of relations.Comment: 21 page
    • …
    corecore