14 research outputs found

    Langford sequences and a product of digraphs

    Get PDF
    Skolem and Langford sequences and their many generalizations have applications in numerous areas. The h\otimes_h-product is a generalization of the direct product of digraphs. In this paper we use the h\otimes_h-product and super edge-magic digraphs to construct an exponential number of Langford sequences with certain order and defect. We also apply this procedure to extended Skolem sequences.Comment: 10 pages, 6 figures, to appear in European Journal of Combinatoric

    A new labeling construction from the -product

    Get PDF
    The ¿h-product that is referred in the title was introduced in 2008 as a generalization of the Kronecker product of digraphs. Many relations among labelings have been obtained since then, always using as a second factor a family of super edge-magic graphs with equal order and size. In this paper, we introduce a new labeling construction by changing the role of the factors. Using this new construction the range of applications grows up considerably. In particular, we can increase the information about magic sums of cycles and crowns.Postprint (published version

    Connectivity and other invariants of generalized products of graphs

    Get PDF
    Figueroa-Centeno et al. [4] introduced the following product of digraphs let D be a digraph and let G be a family of digraphs such that V (F) = V for every F¿G. Consider any function h:E(D)¿G. Then the product D¿hG is the digraph with vertex set V(D)×V and ((a,x),(b,y))¿E(D¿hG) if and only if (a,b)¿E(D) and (x,y)¿E(h(a,b)). In this paper, we deal with the undirected version of the ¿h-product, which is a generalization of the classical direct product of graphs and, motivated by the ¿h-product, we also recover a generalization of the classical lexicographic product of graphs, namely the °h-product, that was introduced by Sabidussi in 1961. We provide two characterizations for the connectivity of G¿hG that generalize the existing one for the direct product. For G°hG, we provide exact formulas for the connectivity and the edge-connectivity, under the assumption that V (F) = V , for all F¿G. We also introduce some miscellaneous results about other invariants in terms of the factors of both, the ¿h-product and the °h-product. Some of them are easily obtained from the corresponding product of two graphs, but many others generalize the existing ones for the direct and the lexicographic product, respectively. We end up the paper by presenting some structural properties. An interesting result in this direction is a characterization for the existence of a nontrivial decomposition of a given graph G in terms of ¿h-product.Postprint (author's final draft
    corecore