30,148 research outputs found

    Targeted Recovery as an Effective Strategy against Epidemic Spreading

    Full text link
    We propose a targeted intervention protocol where recovery is restricted to individuals that have the least number of infected neighbours. Our recovery strategy is highly efficient on any kind of network, since epidemic outbreaks are minimal when compared to the baseline scenario of spontaneous recovery. In the case of spatially embedded networks, we find that an epidemic stays strongly spatially confined with a characteristic length scale undergoing a random walk. We demonstrate numerically and analytically that this dynamics leads to an epidemic spot with a flat surface structure and a radius that grows linearly with the spreading rate.Comment: 6 pages, 5 figure

    Non-linear Langevin model for the early-stage dynamics of electrospinning jets

    Full text link
    We present a non-linear Langevin model to investigate the early-stage dynamics of electrified polymer jets in electrospinning experiments. In particular, we study the effects of air drag force on the uniaxial elongation of the charged jet, right after ejection from the nozzle. Numerical simulations show that the elongation of the jet filament close to the injection point is significantly affected by the non-linear drag exerted by the surrounding air. These result provide useful insights for the optimal design of current and future electrospinning experiments.Comment: 11 pages, 6 figures, 1 table. arXiv admin note: text overlap with arXiv:1503.0469

    Elasticity sampling links thermodynamics to metabolic control

    Full text link
    Metabolic networks can be turned into kinetic models in a predefined steady state by sampling the reaction elasticities in this state. Elasticities for many reversible rate laws can be computed from the reaction Gibbs free energies, which are determined by the state, and from physically unconstrained saturation values. Starting from a network structure with allosteric regulation and consistent metabolic fluxes and concentrations, one can sample the elasticities, compute the control coefficients, and reconstruct a kinetic model with consistent reversible rate laws. Some of the model variables are manually chosen, fitted to data, or optimised, while the others are computed from them. The resulting model ensemble allows for probabilistic predictions, for instance, about possible dynamic behaviour. By adding more data or tighter constraints, the predictions can be made more precise. Model variants differing in network structure, flux distributions, thermodynamic forces, regulation, or rate laws can be realised by different model ensembles and compared by significance tests. The thermodynamic forces have specific effects on flux control, on the synergisms between enzymes, and on the emergence and propagation of metabolite fluctuations. Large kinetic models could help to simulate global metabolic dynamics and to predict the effects of enzyme inhibition, differential expression, genetic modifications, and their combinations on metabolic fluxes. MATLAB code for elasticity sampling is freely available

    A Linear Programming Approach to Error Bounds for Random Walks in the Quarter-plane

    Full text link
    We consider the approximation of the performance of random walks in the quarter-plane. The approximation is in terms of a random walk with a product-form stationary distribution, which is obtained by perturbing the transition probabilities along the boundaries of the state space. A Markov reward approach is used to bound the approximation error. The main contribution of the work is the formulation of a linear program that provides the approximation error
    • …
    corecore