Metabolic networks can be turned into kinetic models in a predefined steady
state by sampling the reaction elasticities in this state. Elasticities for
many reversible rate laws can be computed from the reaction Gibbs free
energies, which are determined by the state, and from physically unconstrained
saturation values. Starting from a network structure with allosteric regulation
and consistent metabolic fluxes and concentrations, one can sample the
elasticities, compute the control coefficients, and reconstruct a kinetic model
with consistent reversible rate laws. Some of the model variables are manually
chosen, fitted to data, or optimised, while the others are computed from them.
The resulting model ensemble allows for probabilistic predictions, for
instance, about possible dynamic behaviour. By adding more data or tighter
constraints, the predictions can be made more precise. Model variants differing
in network structure, flux distributions, thermodynamic forces, regulation, or
rate laws can be realised by different model ensembles and compared by
significance tests. The thermodynamic forces have specific effects on flux
control, on the synergisms between enzymes, and on the emergence and
propagation of metabolite fluctuations. Large kinetic models could help to
simulate global metabolic dynamics and to predict the effects of enzyme
inhibition, differential expression, genetic modifications, and their
combinations on metabolic fluxes. MATLAB code for elasticity sampling is freely
available