3 research outputs found

    Frequency Doubled And Stabilized All-solid-state Ti:sapphire Lasers

    No full text
    We describe in detail the design, construction, and characterization of an efficient frequency doubled and stabilized all-solid-state Ti:sapphire laser. The laser frequency has been locked to the resonance of a Fabry-Perot cavity, and doubled in a Brewster-cut potassium niobate crystal placed inside a power enhancement cavity. Up to 200 mW of single frequency blue light with fast frequency instabilities of 40-kHz rms and a drift of 10 MHz/hour has been generated. The spectral distributions of amplitude and frequency noise for the free-running laser have been measured and compared with the case of pumping from an argon ion laser. Our laser is well suited in atomic physics for high resolution spectroscopy and for laser cooling and trapping using transitions in the blue-violet region, as we demonstrate with the calcium resonant transition, at 423 nm.41511221127Moulton, P.F., Spectroscopic and laser characteristics of Ti:Al 2O 3 (1986) J. Opt. Soc. Am. B, 3, pp. 125-133Schulz, P.A., Single-frequency Ti:Al 2O 3 ring laser (1988) IEEE J. Quantum Electron., 24, pp. 1039-1044Vassen, W., Zimmermann, C., Kallenbach, R., Hänsch, T.W., A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy (1990) Opt. Commun., 75, pp. 435-440Boyd, T.L., Kimble, H.J., Frequency stabilization of a continuous-wave Ti:sapphire laser (1991) Opt. Lett., 16, pp. 808-810Harrison, J., Finch, A., Rines, D.M., Rines, G.A., Moulton, P.F., Low-threshold, cw, all-solid-state Ti:Al 2O 3 laser (1991) Opt. Lett., 16, pp. 581-583Feugnet, G., Bussac, C., Larat, C., Schwarz, M., Pocholle, J.P., High-efficiency TEM 00 NdYVO 4 laser longitudinally pumped by a high-power array (1995) Opt. Lett., 20, pp. 157-159Tsunekane, M., Taguchi, N., Inaba, H., High power, efficient, low-noise, continuous-wave all-solid-state Ti:sapphire laser (1996) Opt. Lett., 21, pp. 1912-1914Single-frequency Nd:YVO 4 laser, 5-W output power (model VERDI) Coherent, Inc., Laser Group, 5100 Patrick Henry Drive, Santa Clara, CA 95054, USACavasso-Filho, R.L., Scalabrin, A., Pereira, D., Cruz, F.C., Laser deceleration and magneto-optical trapping of calcium (in press)Curtis, E.A., Oates, C.W., Hollberg, L., Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit (2001) Phys. Rev. A, 64, p. 031403Binnewies, T., Wilpers, G., Sterr, U., Riehle, F., Helmcke, J., Mehlstäubler, T.E., Rasel, E.M., Ertmer, W., Doppler cooling and trapping on forbidden transitions (2001) Phys. Rev. Lett., 87, p. 123002Metcalf, H.J., Van Der Straten, P., (1999) Laser Cooling and Trapping, pp. 156-164. , Springer, New YorkRiehle, F., Schnatz, H., Lipphardt, B., Zinner, G., Trebst, T., Helmcke, J., The optical calcium frequency standard (1999) IEEE Trans. Instrum. Meas., 48, pp. 613-617(1996) Proc. Fifth Symp. Frequency Standards and Metrology, , J. C. Bergquist, Ed., World Scientific, SingaporenotePinto, J.F., Esterowitz, L., Rosenblatt, G.H., Kokta, M., Peressini, D., Improved Ti:sapphire laser performance with new high figure of merit crystals (1994) IEEE J. Quantum Electron., 20, pp. 2612-2616noteKogelnik, H.W., Dienes, A., Shank, C.V., Astigmatism compensated cavities for cw dye lasers (1972) IEEE J. Quantum Electron., QE-8, pp. 373-379Dunn, M.H., Ferguson, A.I., Coma compensation in off-axis laser resonators (1977) Opt. Commun., 20, pp. 214-219Alexander, S.B., Design of wideband optical heterodyne balanced mixer receivers (1987) J. Lightwave Technol., LT-5, pp. 523-537Zhu, M., Hall, J.L., Stabilization of optical phase/frequency of a laser system: Application to a commercial dye laser with an external stabilizer (1993) J. Opt. Soc. Am. B, 10, pp. 802-816Hamilton, M.W., An introduction to stabilized lasers (1989) Contemp. Phys., 30, pp. 21-30Hänsch, T.W., Couillaud, B., Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity (1980) Opt. Commun., 35, pp. 441-444Lodahl, P., Sorensen, J.L., Polzik, E.S., High efficiency second harmonic generation with a low power diode laser (1997) Appl. Phys. B: Lasers Opt., 64, pp. 383-386Mabuchi, H., Polzik, E.S., Kimble, H.J., Blue-light-induced infrared absorption in KNbO 3 (1994) J. Opt. Soc. Am. B, 11, pp. 2023-2029Boyd, G.D., Kleinman, D.A., Parametric interaction of focused Gaussian light beams (1968) J. Appl. Phys., 39, pp. 3597-3639noteBaumert, J.-C., Günter, P., Melchior, H., High efficiency second-harmonic generation in KNbO 3 crystals (1983) Opt. Commun., 48, pp. 215-220Biaggio, I., Looser, H., Gunter, P., Intracavity frequency doubling of a diode pumped Nd:YAG laser using a KNbO 3 crystal (1989) Ferroelectrics, 94, pp. 157-161Cavasso-Filho, R.L., Mirage, A., Scalabrin, A., Pereira, D., Cruz, F.C., Laser spectroscopy of calcium in hollow-cathode discharges (2001) J. Opt. Soc. Am. B, 18, pp. 1922-192
    corecore