164,937 research outputs found

    The number of generalized balanced lines

    Full text link
    Let SS be a set of rr red points and b=r+2db=r+2d blue points in general position in the plane, with d0d\geq 0. A line \ell determined by them is said to be balanced if in each open half-plane bounded by \ell the difference between the number of red points and blue points is dd. We show that every set SS as above has at least rr balanced lines. The main techniques in the proof are rotations and a generalization, sliding rotations, introduced here.Comment: 6 pages, 3 figures, several typos fixed, reference adde

    Decomposition tables for experiments I. A chain of randomizations

    Get PDF
    One aspect of evaluating the design for an experiment is the discovery of the relationships between subspaces of the data space. Initially we establish the notation and methods for evaluating an experiment with a single randomization. Starting with two structures, or orthogonal decompositions of the data space, we describe how to combine them to form the overall decomposition for a single-randomization experiment that is ``structure balanced.'' The relationships between the two structures are characterized using efficiency factors. The decomposition is encapsulated in a decomposition table. Then, for experiments that involve multiple randomizations forming a chain, we take several structures that pairwise are structure balanced and combine them to establish the form of the orthogonal decomposition for the experiment. In particular, it is proven that the properties of the design for such an experiment are derived in a straightforward manner from those of the individual designs. We show how to formulate an extended decomposition table giving the sources of variation, their relationships and their degrees of freedom, so that competing designs can be evaluated.Comment: Published in at http://dx.doi.org/10.1214/09-AOS717 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Balanced partitions of 3-colored geometric sets in the plane

    Get PDF
    Let SS be a finite set of geometric objects partitioned into classes or colors . A subset S'¿SS'¿S is said to be balanced if S'S' contains the same amount of elements of SS from each of the colors. We study several problems on partitioning 33-colored sets of points and lines in the plane into two balanced subsets: (a) We prove that for every 3-colored arrangement of lines there exists a segment that intersects exactly one line of each color, and that when there are 2m2m lines of each color, there is a segment intercepting mm lines of each color. (b) Given nn red points, nn blue points and nn green points on any closed Jordan curve ¿¿, we show that for every integer kk with 0=k=n0=k=n there is a pair of disjoint intervals on ¿¿ whose union contains exactly kk points of each color. (c) Given a set SS of nn red points, nn blue points and nn green points in the integer lattice satisfying certain constraints, there exist two rays with common apex, one vertical and one horizontal, whose union splits the plane into two regions, each one containing a balanced subset of SS.Peer ReviewedPostprint (published version

    Effect of Loss on Multiplexed Single-Photon Sources

    Full text link
    An on-demand single-photon source is a key requirement for scaling many optical quantum technologies. A promising approach to realize an on-demand single-photon source is to multiplex an array of heralded single-photon sources using an active optical switching network. However, the performance of multiplexed sources is degraded by photon loss in the optical components and the non-unit detection efficiency of the heralding detectors. We provide a theoretical description of a general multiplexed single-photon source with lossy components and derive expressions for the output probabilities of single-photon emission and multi-photon contamination. We apply these expressions to three specific multiplexing source architectures and consider their tradeoffs in design and performance. To assess the effect of lossy components on near- and long-term experimental goals, we simulate the multiplexed sources when used for many-photon state generation under various amounts of component loss. We find that with a multiplexed source composed of switches with ~0.2-0.4 dB loss and high efficiency number-resolving detectors, a single-photon source capable of efficiently producing 20-40 photon states with low multi-photon contamination is possible, offering the possibility of unlocking new classes of experiments and technologies.Comment: Journal versio
    corecore