6,552 research outputs found

    The polytope of non-crossing graphs on a planar point set

    Full text link
    For any finite set \A of nn points in R2\R^2, we define a (3n−3)(3n-3)-dimensional simple polyhedron whose face poset is isomorphic to the poset of ``non-crossing marked graphs'' with vertex set \A, where a marked graph is defined as a geometric graph together with a subset of its vertices. The poset of non-crossing graphs on \A appears as the complement of the star of a face in that polyhedron. The polyhedron has a unique maximal bounded face, of dimension 2ni+n−32n_i +n -3 where nin_i is the number of points of \A in the interior of \conv(\A). The vertices of this polytope are all the pseudo-triangulations of \A, and the edges are flips of two types: the traditional diagonal flips (in pseudo-triangulations) and the removal or insertion of a single edge. As a by-product of our construction we prove that all pseudo-triangulations are infinitesimally rigid graphs.Comment: 28 pages, 16 figures. Main change from v1 and v2: Introduction has been reshape

    Fat 4-polytopes and fatter 3-spheres

    Full text link
    We introduce the fatness parameter of a 4-dimensional polytope P, defined as \phi(P)=(f_1+f_2)/(f_0+f_3). It arises in an important open problem in 4-dimensional combinatorial geometry: Is the fatness of convex 4-polytopes bounded? We describe and analyze a hyperbolic geometry construction that produces 4-polytopes with fatness \phi(P)>5.048, as well as the first infinite family of 2-simple, 2-simplicial 4-polytopes. Moreover, using a construction via finite covering spaces of surfaces, we show that fatness is not bounded for the more general class of strongly regular CW decompositions of the 3-sphere.Comment: 12 pages, 12 figures. This version has minor changes proposed by the second refere

    The rigidity of infinite graphs

    Full text link
    A rigidity theory is developed for the Euclidean and non-Euclidean placements of countably infinite simple graphs in R^d with respect to the classical l^p norms, for d>1 and 1<p<\infty. Generalisations are obtained for the Laman and Henneberg combinatorial characterisations of generic infinitesimal rigidity for finite graphs in the Euclidean plane. Also Tay's multi-graph characterisation of the rigidity of generic finite body-bar frameworks in d-dimensional Euclidean space is generalised to the non-Euclidean l^p norms and to countably infinite graphs. For all dimensions and norms it is shown that a generically rigid countable simple graph is the direct limit of an inclusion tower of finite graphs for which the inclusions satisfy a relative rigidity property. For d>2 a countable graph which is rigid for generic placements in R^d may fail the stronger property of sequential rigidity, while for d=2 the equivalence with sequential rigidity is obtained from the generalised Laman characterisations. Applications are given to the flexibility of non-Euclidean convex polyhedra and to the infinitesimal and continuous rigidity of compact infinitely-faceted simplicial polytopes.Comment: 51 page

    Pseudograph associahedra

    Get PDF
    Given a simple graph G, the graph associahedron KG is a simple polytope whose face poset is based on the connected subgraphs of G. This paper defines and constructs graph associahedra in a general context, for pseudographs with loops and multiple edges, which are also allowed to be disconnected. We then consider deformations of pseudograph associahedra as their underlying graphs are altered by edge contractions and edge deletions.Comment: 25 pages, 22 figure
    • …
    corecore