11,622 research outputs found

    Approximate unitary tt-designs by short random quantum circuits using nearest-neighbor and long-range gates

    Full text link
    We prove that poly(t)n1/Dpoly(t) \cdot n^{1/D}-depth local random quantum circuits with two qudit nearest-neighbor gates on a DD-dimensional lattice with n qudits are approximate tt-designs in various measures. These include the "monomial" measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was poly(t)npoly(t)\cdot n due to Brandao-Harrow-Horodecki (BHH) for D=1D=1. We also improve the "scrambling" and "decoupling" bounds for spatially local random circuits due to Brown and Fawzi. One consequence of our result is that assuming the polynomial hierarchy (PH) is infinite and that certain counting problems are #P\#P-hard on average, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constant-depth quantum circuits was known to be hard for classical computers under the assumption that PH is infinite. However, to show the hardness of approximate sampling using this strategy requires that the quantum circuits have a property called "anti-concentration", meaning roughly that the output has near-maximal entropy. Unitary 2-designs have the desired anti-concentration property. Thus our result improves the required depth for this level of anti-concentration from linear depth to a sub-linear value, depending on the geometry of the interactions. This is relevant to a recent proposal by the Google Quantum AI group to perform such a sampling task with 49 qubits on a two-dimensional lattice and confirms their conjecture that O(n)O(\sqrt n) depth suffices for anti-concentration. We also prove that anti-concentration is possible in depth O(log(n) loglog(n)) using a different model

    New strongly regular graphs from finite geometries via switching

    Get PDF
    We show that the strongly regular graph on non-isotropic points of one type of the polar spaces of type U(n, 2), O(n, 3), O(n, 5), O+ (n, 3), and O- (n, 3) are not determined by its parameters for n >= 6. We prove this by using a variation of Godsil-McKay switching recently described by Wang, Qiu, and Hu. This also results in a new, shorter proof of a previous result of the first author which showed that the collinearity graph of a polar space is not determined by its spectrum. The same switching gives a linear algebra explanation for the construction of a large number of non-isomorphic designs. (C) 2019 Elsevier Inc. All rights reserved

    New Strongly Regular Graphs from Finite Geometries via Switching

    Get PDF
    We show that the strongly regular graph on non-isotropic points of one type of the polar spaces of type U(n,2)U(n, 2), O(n,3)O(n, 3), O(n,5)O(n, 5), O+(n,3)O^+(n, 3), and O(n,3)O^-(n, 3) are not determined by its parameters for n6n \geq 6. We prove this by using a variation of Godsil-McKay switching recently described by Wang, Qiu, and Hu. This also results in a new, shorter proof of a previous result of the first author which showed that the collinearity graph of a polar space is not determined by its spectrum. The same switching gives a linear algebra explanation for the construction of a large number of non-isomorphic designs.Comment: 13 pages, accepted in Linear Algebra and Its Application

    P?=NP as minimization of degree 4 polynomial, integration or Grassmann number problem, and new graph isomorphism problem approaches

    Full text link
    While the P vs NP problem is mainly approached form the point of view of discrete mathematics, this paper proposes reformulations into the field of abstract algebra, geometry, fourier analysis and of continuous global optimization - which advanced tools might bring new perspectives and approaches for this question. The first one is equivalence of satisfaction of 3-SAT problem with the question of reaching zero of a nonnegative degree 4 multivariate polynomial (sum of squares), what could be tested from the perspective of algebra by using discriminant. It could be also approached as a continuous global optimization problem inside [0,1]n[0,1]^n, for example in physical realizations like adiabatic quantum computers. However, the number of local minima usually grows exponentially. Reducing to degree 2 polynomial plus constraints of being in {0,1}n\{0,1\}^n, we get geometric formulations as the question if plane or sphere intersects with {0,1}n\{0,1\}^n. There will be also presented some non-standard perspectives for the Subset-Sum, like through convergence of a series, or zeroing of 02πicos(φki)dφ\int_0^{2\pi} \prod_i \cos(\varphi k_i) d\varphi fourier-type integral for some natural kik_i. The last discussed approach is using anti-commuting Grassmann numbers θi\theta_i, making (Adiag(θi))n(A \cdot \textrm{diag}(\theta_i))^n nonzero only if AA has a Hamilton cycle. Hence, the P\neNP assumption implies exponential growth of matrix representation of Grassmann numbers. There will be also discussed a looking promising algebraic/geometric approach to the graph isomorphism problem -- tested to successfully distinguish strongly regular graphs with up to 29 vertices.Comment: 19 pages, 8 figure

    Entanglement Typicality

    Full text link
    We provide a summary of both seminal and recent results on typical entanglement. By typical values of entanglement, we refer here to values of entanglement quantifiers that (given a reasonable measure on the manifold of states) appear with arbitrarily high probability for quantum systems of sufficiently high dimensionality. We work within the Haar measure framework for discrete quantum variables, where we report on results concerning the average von Neumann and linear entropies as well as arguments implying the typicality of such values in the asymptotic limit. We then proceed to discuss the generation of typical quantum states with random circuitry. Different phases of entanglement, and the connection between typical entanglement and thermodynamics are discussed. We also cover approaches to measures on the non-compact set of Gaussian states of continuous variable quantum systems.Comment: Review paper with two quotes and minimalist figure

    An evolutionary advantage of cooperation

    Full text link
    Cooperation is a persistent behavioral pattern of entities pooling and sharing resources. Its ubiquity in nature poses a conundrum. Whenever two entities cooperate, one must willingly relinquish something of value to the other. Why is this apparent altruism favored in evolution? Classical solutions assume a net fitness gain in a cooperative transaction which, through reciprocity or relatedness, finds its way back from recipient to donor. We seek the source of this fitness gain. Our analysis rests on the insight that evolutionary processes are typically multiplicative and noisy. Fluctuations have a net negative effect on the long-time growth rate of resources but no effect on the growth rate of their expectation value. This is an example of non-ergodicity. By reducing the amplitude of fluctuations, pooling and sharing increases the long-time growth rate for cooperating entities, meaning that cooperators outgrow similar non-cooperators. We identify this increase in growth rate as the net fitness gain, consistent with the concept of geometric mean fitness in the biological literature. This constitutes a fundamental mechanism for the evolution of cooperation. Its minimal assumptions make it a candidate explanation of cooperation in settings too simple for other fitness gains, such as emergent function and specialization, to be probable. One such example is the transition from single cells to early multicellular life.Comment: 16 pages, 2 figure
    corecore