37,871 research outputs found

    Multiple chaotic central pattern generators with learning for legged locomotion and malfunction compensation

    Full text link
    An originally chaotic system can be controlled into various periodic dynamics. When it is implemented into a legged robot's locomotion control as a central pattern generator (CPG), sophisticated gait patterns arise so that the robot can perform various walking behaviors. However, such a single chaotic CPG controller has difficulties dealing with leg malfunction. Specifically, in the scenarios presented here, its movement permanently deviates from the desired trajectory. To address this problem, we extend the single chaotic CPG to multiple CPGs with learning. The learning mechanism is based on a simulated annealing algorithm. In a normal situation, the CPGs synchronize and their dynamics are identical. With leg malfunction or disability, the CPGs lose synchronization leading to independent dynamics. In this case, the learning mechanism is applied to automatically adjust the remaining legs' oscillation frequencies so that the robot adapts its locomotion to deal with the malfunction. As a consequence, the trajectory produced by the multiple chaotic CPGs resembles the original trajectory far better than the one produced by only a single CPG. The performance of the system is evaluated first in a physical simulation of a quadruped as well as a hexapod robot and finally in a real six-legged walking machine called AMOSII. The experimental results presented here reveal that using multiple CPGs with learning is an effective approach for adaptive locomotion generation where, for instance, different body parts have to perform independent movements for malfunction compensation.Comment: 48 pages, 16 figures, Information Sciences 201

    A real-time human-robot interaction system based on gestures for assistive scenarios

    Get PDF
    Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times.Postprint (author's final draft

    Learning Social Affordance Grammar from Videos: Transferring Human Interactions to Human-Robot Interactions

    Full text link
    In this paper, we present a general framework for learning social affordance grammar as a spatiotemporal AND-OR graph (ST-AOG) from RGB-D videos of human interactions, and transfer the grammar to humanoids to enable a real-time motion inference for human-robot interaction (HRI). Based on Gibbs sampling, our weakly supervised grammar learning can automatically construct a hierarchical representation of an interaction with long-term joint sub-tasks of both agents and short term atomic actions of individual agents. Based on a new RGB-D video dataset with rich instances of human interactions, our experiments of Baxter simulation, human evaluation, and real Baxter test demonstrate that the model learned from limited training data successfully generates human-like behaviors in unseen scenarios and outperforms both baselines.Comment: The 2017 IEEE International Conference on Robotics and Automation (ICRA

    Show, Attend and Interact: Perceivable Human-Robot Social Interaction through Neural Attention Q-Network

    Full text link
    For a safe, natural and effective human-robot social interaction, it is essential to develop a system that allows a robot to demonstrate the perceivable responsive behaviors to complex human behaviors. We introduce the Multimodal Deep Attention Recurrent Q-Network using which the robot exhibits human-like social interaction skills after 14 days of interacting with people in an uncontrolled real world. Each and every day during the 14 days, the system gathered robot interaction experiences with people through a hit-and-trial method and then trained the MDARQN on these experiences using end-to-end reinforcement learning approach. The results of interaction based learning indicate that the robot has learned to respond to complex human behaviors in a perceivable and socially acceptable manner.Comment: 7 pages, 5 figures, accepted by IEEE-RAS ICRA'1

    Cellular Automata Applications in Shortest Path Problem

    Full text link
    Cellular Automata (CAs) are computational models that can capture the essential features of systems in which global behavior emerges from the collective effect of simple components, which interact locally. During the last decades, CAs have been extensively used for mimicking several natural processes and systems to find fine solutions in many complex hard to solve computer science and engineering problems. Among them, the shortest path problem is one of the most pronounced and highly studied problems that scientists have been trying to tackle by using a plethora of methodologies and even unconventional approaches. The proposed solutions are mainly justified by their ability to provide a correct solution in a better time complexity than the renowned Dijkstra's algorithm. Although there is a wide variety regarding the algorithmic complexity of the algorithms suggested, spanning from simplistic graph traversal algorithms to complex nature inspired and bio-mimicking algorithms, in this chapter we focus on the successful application of CAs to shortest path problem as found in various diverse disciplines like computer science, swarm robotics, computer networks, decision science and biomimicking of biological organisms' behaviour. In particular, an introduction on the first CA-based algorithm tackling the shortest path problem is provided in detail. After the short presentation of shortest path algorithms arriving from the relaxization of the CAs principles, the application of the CA-based shortest path definition on the coordinated motion of swarm robotics is also introduced. Moreover, the CA based application of shortest path finding in computer networks is presented in brief. Finally, a CA that models exactly the behavior of a biological organism, namely the Physarum's behavior, finding the minimum-length path between two points in a labyrinth is given.Comment: To appear in the book: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201

    A Constructive Model of Mother-Infant Interaction towards Infant’s Vowel Articulation

    Get PDF
    Human infants seem to develop to acquire common phonemes to adults without the capability to articulate or any explicit knowledge. To understand such unrevealed human cognitive development, building a robot which reproduces such a developmental process seems effective. It will also contribute to a design principle for a robot that can communicate with human beings. This paper hypothesizes that the caregiver’s parrotry to the coo of the robot plays an important role in the phoneme acquisition process based on the implication from behavioral studies, and propose a constructive model for it. We validate the proposed model by examining whether a real robot can acquire Japanese vowels through interactions with its caregiver

    A novel plasticity rule can explain the development of sensorimotor intelligence

    Full text link
    Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, the self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher level constructs. We propose differential extrinsic plasticity (DEP) as a new synaptic rule for self-learning systems and apply it to a number of complex robotic systems as a test case. Without specifying any purpose or goal, seemingly purposeful and adaptive behavior is developed, displaying a certain level of sensorimotor intelligence. These surprising results require no system specific modifications of the DEP rule but arise rather from the underlying mechanism of spontaneous symmetry breaking due to the tight brain-body-environment coupling. The new synaptic rule is biologically plausible and it would be an interesting target for a neurobiolocal investigation. We also argue that this neuronal mechanism may have been a catalyst in natural evolution.Comment: 18 pages, 5 figures, 7 video
    • …
    corecore