17 research outputs found

    Internet Traffic based Channel Selection in Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks(WMNs) are the outstanding technology to facilitate wireless broadband Internet access to users. Routers in WMN have multiple radio interfaces to which multiple orthogonal/partially overlapping channels are assigned to improve the capacity of WMN. This paper is focused on channel selection problem in WMN since proper channel selection to radio interfaces of mesh router increases the performance of WMN. To access the Internet through WMN, the users have to associate with one of the mesh routers. Since most of the Internet Servers are still in wired networks, the major dominant traffic of Internet users is in downlink direction i.e. from the gateway of WMN to user. This paper proposes a new method of channel selection to improve the user performance in downlink direction of Internet traffic. The method is scalable and completely distributed solution to the problem of channel selection in WMN. The simulation results indicate the significant improvement in user performance

    A New Method of User Association in Wireless Mesh Networks

    Get PDF
    The IEEE 802.11 based wireless mesh networks (WMNs) are becoming the promising technology to provide last-mile broadband Internet access to the users. In order to access the Internet through the pre-deployed WMN, the user has to associate with one of the access points (APs) present in the network. In WMN, it is very common that the user device can have multiple APs in its vicinity. Since the user performance majorly depends on the associated AP, how to select the best AP is always remaining as a challenging research problem in WMN. The traditional method of AP selection is based on received signal strength (RSS) and it is proven inefficient in the literature as the method does not consider AP load, channel conditions, etc. This paper proposes a new method of user association in WMN such that the user selects the AP based on achievable end-to-end throughput measured in the presence of other interfering APs. The proposed association metric is independent of routing protocol and routing metric used in WMN. The simulation results show that our method outperforms the RSS based AP selection method in WMN

    A dynamic access point allocation algorithm for dense wireless LANs using potential game

    Get PDF
    This work introduces an innovative Access Point (AP) allocation algorithm for dense Wi-Fi networks, which relies on a centralised potential game developed in a Software-Defined Wireless Networking (SDWN)-based framework. The proposed strategy optimises the allocation of the Wi-Fi stations (STAs) to APs and allows their dynamic reallocation according to possible changes in the capacity of the Wi-Fi network. This paper illustrates the design of the proposed framework based on SDWN and the implementation of the potential game-based algorithm, which includes two possible strategies. The main novel contribution of this work is that the algorithm allows us to efficiently reallocate the STAs by considering external interference, which can negatively affect the capacities of the APs handled by the SDWN controller. Moreover, the paper provides a detailed performance analysis of the algorithm, which describes the significant improvements achieved with respect to the state of the art. Specifically, the results have been compared against the AP selection considered by the IEEE 802.11 standards and another centralised algorithm dealing with the same problem, in terms of the data bit rate provided to the STAs, their dissatisfaction and Quality of Experience (QoE). Finally, the paper analyses the trade-off between efficient performance and the computational complexity achieved by the strategies implemented in the proposed algorithm

    Quality of Service Oriented Access Point Selection Framework for Large Wi-Fi Networks

    Get PDF
    This paper addresses the problem of Access Point (AP) selection in large Wi-Fi networks. Unlike current solutions that rely on Received Signal Strength (RSS) to determine the best AP that could serve a wireless user’s request, we propose a novel framework that considers the Quality of Service (QoS) requirements of the user’s data flow. The proposed framework relies on a function reflecting the suitability of a Wi-Fi AP to satisfy the QoS requirements of the data flow. The framework takes advantage of the flexibility and centralised nature of Software Defined Networking (SDN). A performance comparison of this algorithm developed through an SDN-based simulator shows significant achievements against other state of the art solutions in terms of provided QoS and improved wireless network capacity

    A software framework for alleviating the effects of MAC-aware jamming attacks in wireless access networks

    Get PDF
    The IEEE 802.11 protocol inherently provides the same long-term throughput to all the clients associated with a given access point (AP). In this paper, we first identify a clever, low-power jamming attack that can take advantage of this behavioral trait: the placement of a lowpower jammer in a way that it affects a single legitimate client can cause starvation to all the other clients. In other words, the total throughput provided by the corresponding AP is drastically degraded. To fight against this attack, we design FIJI, a cross-layer anti-jamming system that detects such intelligent jammers and mitigates their impact on network performance. FIJI looks for anomalies in the AP load distribution to efficiently perform jammer detection. It then makes decisions with regards to optimally shaping the traffic such that: (a) the clients that are not explicitly jammed are shielded from experiencing starvation and, (b) the jammed clients receive the maximum possible throughput under the given conditions. We implement FIJI in real hardware; we evaluate its efficacy through experiments on two wireless testbeds, under different traffic scenarios, network densities and jammer locations. We perform experiments both indoors and outdoors, and we consider both WLAN and mesh deployments. Our measurements suggest that FIJI detects such jammers in realtime and alleviates their impact by allocating the available bandwidth in a fair and efficient way. © Springer Science+Business Media

    SIP-based proactive and adaptive mobility management framework for heterogeneous networks

    Get PDF
    Abstract In this paper, we present and evaluate the performance of a mobility management system called the Proactive and Adaptive Handover (PAHO) system. PAHO is an application-level approach that uses SIP to manage client-initiated connection handoff across heterogeneous networks based on the IEEE 802.21 framework with designated user/configuration policy. Unlike conventional systems which make sub-optimal decision when managing connection handoff due to limited awareness of the relevant context for the application/service being delivered, PAHO defines proper interface to interact with the application as to determine when and to where the handoff and/or codec switching should take place in the event of network performance degradation. The results showed that using the PAHO approach on an audio/video conferencing session helps reducing the overall handover delay from 10.766 s (on non-PAHO system) down to at least 288 ms, and slowing down the degradation of MOS value throughout the entire experiment in the event of signal degradation as well as network congestion. It is also shown that load balancing among the access points (AP) could be achieved with an improved Information Server (IS). r 2007 Elsevier Ltd. All rights reserved

    Application of the DQCA protocol to the optimization of wireless communications systems in cellular environments

    Get PDF
    This final career thesis (Master thesis) is a contribution on the enhancement of wireless communications, specifically WLAN multi-cell systems based on the IEEE 802.11 standard. The objectives were to propose and study different Cross-Layer AP selection mechanisms that include single, dual and multiple metric based criteria using PHY-MAC interactions. These mechanisms are designed in order to improve system efficiency through the increase of the utilization of the available transmission resources. The key idea of these mechanisms is to make use of certain PHY and MAC parameters, other than the traditional RSSI measurements, in order to optimize the association to the best AP, specially focusing on the innovative use of MAC level state metrics. In this regard, of special interest is the inclusion of MAC level AP traffic load estimations within these association decisions. All the proposals are based on the use of a high-performance MAC protocol called DQCA (Distributed Queueing Collision Avoidance), which is specially fitted to include the proposed techniques. Computer simulations have been carried out to evaluate and quantify the benefits of the proposed mechanisms and techniques in representative scenarios. Moreover, a completely new handoff procedure has been designed for the DQCA muti-cell operation. This handoff process allows implementing each of the proposed AP selection mechanisms. Furthermore, the interaction between a Cross-Layer scheduling technique at the MAC level and two proposed AP selection mechanisms has also been studied. The performance of these techniques has also been assessed by means of computer simulations. The analysis of the obtained results show that the proposed mechanisms perform differently under the considered scenarios. However, the main conclusion that can be drawn is that AP selection mechanisms that are based on joint multiple metrics considerations (SNR, AP load, delay, etc.) perform significantly better than those that use only single or dual metric based mechanisms. After the study, we can conclude that the proposed techniques and mechanisms provide significant efficiency enhancements for DQCA-based WLAN multi-cell systems so that all of them may be taken into account in future wireless networks

    A Dynamic Access Point Allocation Algorithm for Dense Wireless LANs Using Potential Game

    Get PDF
    This work introduces an innovative Access Point (AP) allocation algorithm for dense Wi-Fi networks, which relies on a centralised potential game developed in a Software-Defined Wireless Networking (SDWN)-based framework. The proposed strategy optimises the allocation of the Wi-Fi stations (STAs) to APs and allows their dynamic reallocation according to possible changes in the capacity of the Wi-Fi network. This paper illustrates the design of the proposed framework based on SDWN and the implementation of the potential game-based algorithm, which includes two possible strategies. The main novel contribution of this work is that the algorithm allows us to efficiently reallocate the STAs by considering external interference, which can negatively affect the capacities of the APs handled by the SDWN controller. Moreover, the paper provides a detailed performance analysis of the algorithm, which describes the significant improvements achieved with respect to the state of the art. Specifically, the results have been compared against the AP selection considered by the IEEE 802.11 standards and another centralised algorithm dealing with the same problem, in terms of the data bit rate provided to the STAs, their dissatisfaction and Quality of Experience (QoE). Finally, the paper analyses the trade-off between efficient performance and the computational complexity achieved by the strategies implemented in the proposed algorithm
    corecore