6 research outputs found

    An O(1)-Approximation for Minimum Spanning Tree Interdiction

    Full text link
    Network interdiction problems are a natural way to study the sensitivity of a network optimization problem with respect to the removal of a limited set of edges or vertices. One of the oldest and best-studied interdiction problems is minimum spanning tree (MST) interdiction. Here, an undirected multigraph with nonnegative edge weights and positive interdiction costs on its edges is given, together with a positive budget B. The goal is to find a subset of edges R, whose total interdiction cost does not exceed B, such that removing R leads to a graph where the weight of an MST is as large as possible. Frederickson and Solis-Oba (SODA 1996) presented an O(log m)-approximation for MST interdiction, where m is the number of edges. Since then, no further progress has been made regarding approximations, and the question whether MST interdiction admits an O(1)-approximation remained open. We answer this question in the affirmative, by presenting a 14-approximation that overcomes two main hurdles that hindered further progress so far. Moreover, based on a well-known 2-approximation for the metric traveling salesman problem (TSP), we show that our O(1)-approximation for MST interdiction implies an O(1)-approximation for a natural interdiction version of metric TSP

    The most vital nodes with respect to independent set and vertex cover

    Get PDF
    Given an undirected graph with weights on its vertices, the k most vital nodes independent set (k most vital nodes vertex cover) problem consists of determining a set of k vertices whose removal results in the greatest decrease in the maximum weight of independent sets (minimum weight of vertex covers, respectively). We also consider the complementary problems, minimum node blocker independent set (minimum node blocker vertex cover) that consists of removing a subset of vertices of minimum size such that the maximum weight of independent sets (minimum weight of vertex covers, respectively) in the remaining graph is at most a specified value. We show that these problems are NP-hard on bipartite graphs but polynomial-time solvable on unweighted bipartite graphs. Furthermore, these problems are polynomial also on cographs and graphs of bounded treewidth. Results on the non-existence of ptas are presented, too. (C) 2011 Elsevier B.V. All rights reserved

    d-Transversals of stable sets and vertex covers in weighted bipartite graphs

    Get PDF
    Let G = (V , E) be a graph in which every vertex v ∈ V has a weight w(v)>=0 and a cost c(v) >=0. Let SG be the family of all maximum-weight stable sets in G. For any integer d 0, a minimum d-transversal in the graph G with respect to SG is a subset of vertices T ⊆ V of minimum total cost such that |T ∩ S| d for every S ∈ SG. In this paper, we present a polynomial-time algorithm to determine minimum d-transversals in bipartite graphs. Our algorithm is based on a characterization of maximum-weight stable sets in bipartite graphs. We also derive results on minimum d-transversals of minimum-weight vertex covers in weighted bipartite graphs
    corecore