9 research outputs found

    The maximum number of edges in a graph of bounded dimension, with applications to ring theory

    Get PDF
    AbstractWith a finite graph G = (V, E), we associate a partially ordered set P = (X, P) with X = V ∪ E and x < e in P if and only if x is an endpoint of e in G. This poset is called the incidence poset of G. In this paper, we consider the function M(p, d) defined for p, d ⩾ 2 as the maximum number of edges a graph G can have when it has p vertices and the dimension of its incidence poset is at most d. It is easy to see that M(p, 2) = p − 1 as only the subgraphs of paths have incidence posets with dimension at most 2. Also, a well known theorem of Schnyder asserts that a graph is planar if and only if its incidence poset has dimension at most 3. So M(p, 3) = 3 p − 6 for all p ⩾ 3. In this paper, we use the product ramsey theorem, Turán's theorem and the Erdo&#x030B;s/Stone theorem to show that limp→∞ M(p, 4)/p2 = 38. We then derive some ring theoretic consequences of this in terms of minimal first syzygies and Betti numbers for monomial ideals

    Empty Rectangles and Graph Dimension

    Full text link
    We consider rectangle graphs whose edges are defined by pairs of points in diagonally opposite corners of empty axis-aligned rectangles. The maximum number of edges of such a graph on nn points is shown to be 1/4 n^2 +n -2. This number also has other interpretations: * It is the maximum number of edges of a graph of dimension \bbetween{3}{4}, i.e., of a graph with a realizer of the form \pi_1,\pi_2,\ol{\pi_1},\ol{\pi_2}. * It is the number of 1-faces in a special Scarf complex. The last of these interpretations allows to deduce the maximum number of empty axis-aligned rectangles spanned by 4-element subsets of a set of nn points. Moreover, it follows that the extremal point sets for the two problems coincide. We investigate the maximum number of of edges of a graph of dimension ≬34\between{3}{4}, i.e., of a graph with a realizer of the form \pi_1,\pi_2,\pi_3,\ol{\pi_3}. This maximum is shown to be 1/4n2+O(n)1/4 n^2 + O(n). Box graphs are defined as the 3-dimensional analog of rectangle graphs. The maximum number of edges of such a graph on nn points is shown to be 7/16n2+o(n2)7/16 n^2 + o(n^2)

    Boxicity and separation dimension

    Full text link
    A family F\mathcal{F} of permutations of the vertices of a hypergraph HH is called 'pairwise suitable' for HH if, for every pair of disjoint edges in HH, there exists a permutation in F\mathcal{F} in which all the vertices in one edge precede those in the other. The cardinality of a smallest such family of permutations for HH is called the 'separation dimension' of HH and is denoted by π(H)\pi(H). Equivalently, π(H)\pi(H) is the smallest natural number kk so that the vertices of HH can be embedded in Rk\mathbb{R}^k such that any two disjoint edges of HH can be separated by a hyperplane normal to one of the axes. We show that the separation dimension of a hypergraph HH is equal to the 'boxicity' of the line graph of HH. This connection helps us in borrowing results and techniques from the extensive literature on boxicity to study the concept of separation dimension.Comment: This is the full version of a paper by the same name submitted to WG-2014. Some results proved in this paper are also present in arXiv:1212.6756. arXiv admin note: substantial text overlap with arXiv:1212.675

    On Schnyder's Theorm

    Get PDF
    The central topic of this thesis is Schnyder's Theorem. Schnyder's Theorem provides a characterization of planar graphs in terms of their poset dimension, as follows: a graph G is planar if and only if the dimension of the incidence poset of G is at most three. One of the implications of the theorem is proved by giving an explicit mapping of the vertices to R^2 that defines a straightline embedding of the graph. The other implication is proved by introducing the concept of normal labelling. Normal labellings of plane triangulations can be used to obtain a realizer of the incidence poset. We present an exposition of Schnyder’s theorem with his original proof, using normal labellings. An alternate proof of Schnyder’s Theorem is also presented. This alternate proof does not use normal labellings, instead we use some structural properties of a realizer of the incidence poset to deduce the result. Some applications and a generalization of one implication of Schnyder’s Theorem are also presented in this work. Normal labellings of plane triangulations can be used to obtain a barycentric embedding of a plane triangulation, and they also induce a partition of the edge set of a plane triangulation into edge disjoint trees. These two applications of Schnyder’s Theorem and a third one, relating realizers of the incidence poset and canonical orderings to obtain a compact drawing of a graph, are also presented. A generalization, to abstract simplicial complexes, of one of the implications of Schnyder’s Theorem was proved by Ossona de Mendez. This generalization is also presented in this work. The concept of order labelling is also introduced and we show some similarities of the order labelling and the normal labelling. Finally, we conclude this work by showing the source code of some implementations done in Sage

    Morphing planar triangulations

    Get PDF
    A morph between two drawings of the same graph can be thought of as a continuous deformation between the two given drawings. A morph is linear if every vertex moves along a straight line segment from its initial position to its final position. In this thesis we study algorithms for morphing, in which the morphs are given by sequences of linear morphing steps. In 1944, Cairns proved that it is possible to morph between any two planar drawings of a planar triangulation while preserving planarity during the morph. However this morph may require exponentially many steps. It was not until 2013 that Alamdari et al. proved that the morphing problem for planar triangulations can be solved using polynomially many steps. In 1990 it was shown by Schnyder that using special drawings that we call Schnyder drawings it is possible to draw a planar graph on a O(n)×O(n) grid, and moreover such drawings can be found in O(n) time (here n denotes the number of vertices of the graph). It still remains unknown whether there is an efficient algorithm for morphing in which all drawings are on a polynomially sized grid. In this thesis we give two different new solutions to the morphing problem for planar triangulations. Our first solution gives a strengthening of the result of Alamdari et al. where each step is a unidirectional morph. This also leads to a simpler proof of their result. Our second morphing algorithm finds a planar morph consisting of O(n²) steps between any two Schnyder drawings while remaining in an O(n)×O(n) grid. However, there are drawings of planar triangulations which are not Schnyder drawings, and for these drawings we show that a unidirectional morph consisting of O(n) steps that ends at a Schnyder drawing can be found. We conclude this work by showing that the basic steps from our morphs can be implemented using a Schnyder wood and weight shifts on the set of interior faces
    corecore