4,614 research outputs found

    Recent Progress in Shearlet Theory: Systematic Construction of Shearlet Dilation Groups, Characterization of Wavefront Sets, and New Embeddings

    Get PDF
    The class of generalized shearlet dilation groups has recently been developed to allow the unified treatment of various shearlet groups and associated shearlet transforms that had previously been studied on a case-by-case basis. We consider several aspects of these groups: First, their systematic construction from associative algebras, secondly, their suitability for the characterization of wavefront sets, and finally, the question of constructing embeddings into the symplectic group in a way that intertwines the quasi-regular representation with the metaplectic one. For all questions, it is possible to treat the full class of generalized shearlet groups in a comprehensive and unified way, thus generalizing known results to an infinity of new cases. Our presentation emphasizes the interplay between the algebraic structure underlying the construction of the shearlet dilation groups, the geometric properties of the dual action, and the analytic properties of the associated shearlet transforms.Comment: 28 page

    Continuous Frames, Function Spaces, and the Discretization Problem

    Full text link
    A continuous frame is a family of vectors in a Hilbert space which allows reproductions of arbitrary elements by continuous superpositions. Associated to a given continuous frame we construct certain Banach spaces. Many classical function spaces can be identified as such spaces. We provide a general method to derive Banach frames and atomic decompositions for these Banach spaces by sampling the continuous frame. This is done by generalizing the coorbit space theory developed by Feichtinger and Groechenig. As an important tool the concept of localization of frames is extended to continuous frames. As a byproduct we give a partial answer to the question raised by Ali, Antoine and Gazeau whether any continuous frame admits a corresponding discrete realization generated by sampling.Comment: 44 page

    Wavelet frames, Bergman spaces and Fourier transforms of Laguerre functions

    Get PDF
    The Fourier transforms of Laguerre functions play the same canonical role in wavelet analysis as do the Hermite functions in Gabor analysis. We will use them as analyzing wavelets in a similar way the Hermite functions were recently by K. Groechenig and Y. Lyubarskii in "Gabor frames with Hermite functions, C. R. Acad. Sci. Paris, Ser. I 344 157-162 (2007)". Building on the work of K. Seip, "Beurling type density theorems in the unit disc, Invent. Math., 113, 21-39 (1993)", concerning sampling sequences on weighted Bergman spaces, we find a sufficient density condition for constructing frames by translations and dilations of the Fourier transform of the nth Laguerre function. As in Groechenig-Lyubarskii theorem, the density increases with n, and in the special case of the hyperbolic lattice in the upper half plane it is given by b\log a<\frac{4\pi}{2n+\alpha}, where alpha is the parameter of the Laguerre function.Comment: 15 page

    Time-frequency transforms of white noises and Gaussian analytic functions

    Get PDF
    A family of Gaussian analytic functions (GAFs) has recently been linked to the Gabor transform of white Gaussian noise [Bardenet et al., 2017]. This answered pioneering work by Flandrin [2015], who observed that the zeros of the Gabor transform of white noise had a very regular distribution and proposed filtering algorithms based on the zeros of a spectrogram. The mathematical link with GAFs provides a wealth of probabilistic results to inform the design of such signal processing procedures. In this paper, we study in a systematic way the link between GAFs and a class of time-frequency transforms of Gaussian white noises on Hilbert spaces of signals. Our main observation is a conceptual correspondence between pairs (transform, GAF) and generating functions for classical orthogonal polynomials. This correspondence covers some classical time-frequency transforms, such as the Gabor transform and the Daubechies-Paul analytic wavelet transform. It also unveils new windowed discrete Fourier transforms, which map white noises to fundamental GAFs. All these transforms may thus be of interest to the research program `filtering with zeros'. We also identify the GAF whose zeros are the extrema of the Gabor transform of the white noise and derive their first intensity. Moreover, we discuss important subtleties in defining a white noise and its transform on infinite dimensional Hilbert spaces. Finally, we provide quantitative estimates concerning the finite-dimensional approximations of these white noises, which is of practical interest when it comes to implementing signal processing algorithms based on GAFs.Comment: to appear in Applied and Computational Harmonic Analysi
    corecore